Hypothèse ergodiqueL'hypothèse ergodique, ou hypothèse d'ergodicité, est une hypothèse fondamentale de la physique statistique. Elle fut formulée initialement par Ludwig Boltzmann en 1871 pour les besoins de sa théorie cinétique des gaz. Elle s'appliquait alors aux systèmes composés d'un très grand nombre de particules, et affirmait qu'à l'équilibre, la valeur moyenne d'une grandeur calculée de manière statistique est égale à la moyenne d'un très grand nombre de mesures prises dans le temps.
Loi bêtaDans la théorie des probabilités et en statistiques, la loi bêta est une famille de lois de probabilités continues, définies sur , paramétrée par deux paramètres de forme, typiquement notés (alpha) et (bêta). C'est un cas spécial de la loi de Dirichlet, avec seulement deux paramètres. Admettant une grande variété de formes, elle permet de modéliser de nombreuses distributions à support fini. Elle est par exemple utilisée dans la méthode PERT. Fixons les deux paramètres de forme α, β > 0.
Loi GammaEn théorie des probabilités et en statistiques, une distribution Gamma ou loi Gamma est un type de loi de probabilité de variables aléatoires réelles positives. La famille des distributions Gamma inclut, entre autres, la loi du χ2 et les distributions exponentielles et la distribution d'Erlang. Une distribution Gamma est caractérisée par deux paramètres k et θ et qui affectent respectivement la forme et l'échelle de la représentation graphique de sa fonction de densité.
Noms des grands nombresLes noms des grands nombres sont des systèmes de dérivation lexicale qui permettent de nommer des nombres au-delà du langage courant. Dans les langues occidentales modernes, les grands nombres sont généralement nommés d'après l'un ou l'autre des deux systèmes incompatibles suivants : les échelles longue et courte. Ces deux systèmes définissent différemment les mots « billion », « trillion », « quadrillion » L'échelle longue définit aussi les noms « billiard », « trilliard », « quadrilliard » L'usage a souvent varié, même dans un pays donné, suivant les époques.
Théorie des probabilitésLa théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés par le hasard et l'incertitude. Elle forme avec la statistique les deux sciences du hasard qui sont partie intégrante des mathématiques. Les débuts de l'étude des probabilités correspondent aux premières observations du hasard dans les jeux ou dans les phénomènes climatiques par exemple. Bien que le calcul de probabilités sur des questions liées au hasard existe depuis longtemps, la formalisation mathématique n'est que récente.