Publication

Strong law of large numbers with concave moments

Concepts associés (15)
Loi des grands nombres
vignette|Visualisation de la loi des grands nombres En mathématiques, la loi des grands nombres permet d’interpréter la probabilité comme une fréquence de réalisation, justifiant ainsi le principe des sondages, et présente l’espérance comme une moyenne. Plus formellement, elle signifie que la moyenne empirique, calculée sur les valeurs d’un échantillon, converge vers l’espérance lorsque la taille de l’échantillon tend vers l’infini. Plusieurs théorèmes expriment cette loi, pour différents types de convergence en théorie des probabilités.
Loi de probabilité d'entropie maximale
En statistique et en théorie de l'information, une loi de probabilité d'entropie maximale a une entropie qui est au moins aussi grande que celle de tous les autres membres d'une classe spécifiée de lois de probabilité. Selon le principe d'entropie maximale, si rien n'est connu sur une loi , sauf qu'elle appartient à une certaine classe (généralement définie en termes de propriétés ou de mesures spécifiées), alors la loi avec la plus grande entropie doit être choisie comme la moins informative par défaut.
Inégalité de Jensen
En mathématiques, et plus précisément en analyse, l’inégalité de Jensen est une relation utile et très générale concernant les fonctions convexes, due au mathématicien danois Johan Jensen et dont il donna la preuve en 1906. On peut l'écrire de deux manières : discrète ou intégrale. Elle apparaît notamment en analyse, en théorie de la mesure et en probabilités (théorème de Rao-Blackwell), mais également en physique statistique, en mécanique quantique et en théorie de l'information (sous le nom d'inégalité de Gibbs).
Théorie ergodique
vignette|Flux d'un ensemble statistique dans le potentiel x6 + 4*x3 - 5x**2 - 4x. Sur de longues périodes, il devient tourbillonnant et semble devenir une distribution lisse et stable. Cependant, cette stabilité est un artefact de la pixellisation (la structure réelle est trop fine pour être perçue). Cette animation est inspirée d'une discussion de Gibbs dans son wikisource de 1902 : Elementary Principles in Statistical Mechanics, Chapter XII, p. 143 : « Tendance d'un ensemble de systèmes isolés vers un état d'équilibre statistique ».
Inégalité de Bienaymé-Tchebychev
En théorie des probabilités, l'inégalité de Bienaymé-Tchebychev, est une inégalité de concentration permettant de montrer qu'une variable aléatoire prendra avec une faible probabilité une valeur relativement lointaine de son espérance. Ce résultat s'applique dans des cas très divers, nécessitant la connaissance de peu de propriétés (seules l'espérance et la variance doivent être connues), et permet de démontrer la loi faible des grands nombres.
Loi normale
En théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Loi log-normale
En théorie des probabilités et statistique, une variable aléatoire X est dite suivre une loi log-normale de paramètres et si la variable suit une loi normale d'espérance et de variance . Cette loi est parfois appelée loi de Galton. Elle est habituellement notée dans le cas d'une seule variable ou dans un contexte multidimensionnel. Une variable peut être modélisée par une loi log-normale si elle est le résultat de la multiplication d'un grand nombre de petits facteurs indépendants.
Théorème central limite
thumb|upright=2|La loi normale, souvent appelée la « courbe en cloche ». Le théorème central limite (aussi appelé théorème limite central, théorème de la limite centrale ou théorème de la limite centrée) établit la convergence en loi de la somme d'une suite de variables aléatoires vers la loi normale. Intuitivement, ce résultat affirme qu'une somme de variables aléatoires indépendantes et identiquement distribuées tend (le plus souvent) vers une variable aléatoire gaussienne.
Large numbers
Large numbers are numbers significantly larger than those typically used in everyday life (for instance in simple counting or in monetary transactions), appearing frequently in fields such as mathematics, cosmology, cryptography, and statistical mechanics. They are typically large positive integers, or more generally, large positive real numbers, but may also be other numbers in other contexts. Googology is the study of nomenclature and properties of large numbers.
Ergodicity
In mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.