Test du rapport de vraisemblanceEn statistiques, le test du rapport de vraisemblance est un test statistique qui permet de tester un modèle paramétrique contraint contre un non contraint. Si on appelle le vecteur des paramètres estimés par la méthode du maximum de vraisemblance, on considère un test du type : contre On définit alors l'estimateur du maximum de vraisemblance et l'estimateur du maximum de vraisemblance sous .
Test FEn statistique, un test F est un terme générique désignant tout test statistique dans lequel la statistique de test suit la loi de Fisher sous l'hypothèse nulle. Ce type de tests est souvent utilisé lors de la comparaison de modèles statistiques qui ont été ajustés sur un ensemble de données, afin d'identifier le modèle qui correspond le mieux à la population à partir de laquelle les données ont été échantillonnées. Les tests F dits "exacts" sont ceux pour lesquels les modèles ont été ajustés aux données par la méthode des moindres carrés.
Markov modelIn probability theory, a Markov model is a stochastic model used to model pseudo-randomly changing systems. It is assumed that future states depend only on the current state, not on the events that occurred before it (that is, it assumes the Markov property). Generally, this assumption enables reasoning and computation with the model that would otherwise be intractable. For this reason, in the fields of predictive modelling and probabilistic forecasting, it is desirable for a given model to exhibit the Markov property.
Modèle de mélangeIn statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population.
Projectile motionProjectile motion is a form of motion experienced by an object or particle (a projectile) that is projected in a gravitational field, such as from Earth's surface, and moves along a curved path under the action of gravity only. In the particular case of projectile motion on Earth, most calculations assume the effects of air resistance are passive and negligible. The curved path of objects in projectile motion was shown by Galileo to be a parabola, but may also be a straight line in the special case when it is thrown directly upward or downward.
Loi de NakagamiEn théorie des probabilités et en statistique, la loi de Nakagami ou loi de m-Nakagami est une loi de probabilité continue à deux paramètres et de support . Le paramètre est un paramètre de forme, le second paramètre permet de contrôler la propagation. Cette loi est liée à la loi gamma, son nom est issu du statisticien Minoru Nakagami. La densité de probabilité de la loi de Nakagami est donnée par : où est la fonction Gamma. Sa fonction de répartition est : où P est la fonction gamma incomplète (régularisée).
Radial trajectoryIn astrodynamics and celestial mechanics a radial trajectory is a Kepler orbit with zero angular momentum. Two objects in a radial trajectory move directly towards or away from each other in a straight line. There are three types of radial trajectories (orbits). Radial elliptic trajectory: an orbit corresponding to the part of a degenerate ellipse from the moment the bodies touch each other and move away from each other until they touch each other again. The relative speed of the two objects is less than the escape velocity.
Filtre particulaireLes filtres particulaires, aussi connus sous le nom de méthodes de Monte-Carlo séquentielles, sont des techniques sophistiquées d'estimation de modèles fondées sur la simulation. Les filtres particulaires sont généralement utilisés pour estimer des réseaux bayésiens et constituent des méthodes 'en-ligne' analogues aux méthodes de Monte-Carlo par chaînes de Markov qui elles sont des méthodes 'hors-ligne' (donc a posteriori) et souvent similaires aux méthodes d'échantillonnage préférentiel.
Resampling (statistics)In statistics, resampling is the creation of new samples based on one observed sample. Resampling methods are: Permutation tests (also re-randomization tests) Bootstrapping Cross validation Permutation test Permutation tests rely on resampling the original data assuming the null hypothesis. Based on the resampled data it can be concluded how likely the original data is to occur under the null hypothesis.
Modèle de Markov cachéUn modèle de Markov caché (MMC, terme et définition normalisés par l’ISO/CÉI [ISO/IEC 2382-29:1999]) — (HMM)—, ou plus correctement (mais non employé) automate de Markov à états cachés, est un modèle statistique dans lequel le système modélisé est supposé être un processus markovien de paramètres inconnus. Contrairement à une chaîne de Markov classique, où les transitions prises sont inconnues de l'utilisateur mais où les états d'une exécution sont connus, dans un modèle de Markov caché, les états d'une exécution sont inconnus de l'utilisateur (seuls certains paramètres, comme la température, etc.