Théorie algorithmique de l'informationLa théorie algorithmique de l'information, initiée par Kolmogorov, Solomonov et Chaitin dans les années 1960, vise à quantifier et qualifier le contenu en information d'un ensemble de données, en utilisant la théorie de la calculabilité et la notion de machine universelle de Turing. Cette théorie permet également de formaliser la notion de complexité d'un objet, dans la mesure où l'on considère qu'un objet (au sens large) est d'autant plus complexe qu'il faut beaucoup d'informations pour le décrire, ou — à l'inverse — qu'un objet contient d'autant plus d'informations que sa description est longue.
Classe de complexitéEn informatique théorique, et plus précisément en théorie de la complexité, une classe de complexité est un ensemble de problèmes algorithmiques dont la résolution nécessite la même quantité d'une certaine ressource. Une classe est souvent définie comme l'ensemble de tous les problèmes qui peuvent être résolus sur un modèle de calcul M, utilisant une quantité de ressources du type R, où n, est la taille de l'entrée. Les classes les plus usuelles sont celles définies sur des machines de Turing, avec des contraintes de temps de calcul ou d'espace.
Chimie numériqueLa chimie numérique ou chimie informatique, parfois aussi chimie computationnelle, est une branche de la chimie et de la physico-chimie qui utilise les lois de la chimie théorique exploitées dans des programmes informatiques spécifiques afin de calculer structures et propriétés d'objets chimiques tels que les molécules, les solides, les agrégats atomiques (ou clusters), les surfaces, etc., en appliquant autant que possible ces programmes à des problèmes chimiques réels.
Application contractanteEn mathématiques et plus particulièrement en analyse, une application contractante, ou contraction, est une application qui « rapproche les » ou, plus précisément, une application k-lipschitzienne avec k < 1. Le théorème de point fixe le plus simple et le plus utilisé concerne les applications contractantes. Une application f d'un espace métrique (E, d) dans lui-même est dite k-contractante si 0 ≤ k < 1 et si, pour tout couple de points x et y de E, d(f(x), f(y)) ≤ kd(x, y).
ComplexitéLa complexité caractérise le comportement d'un système dont les composants interagissent localement et de façon non linéaire, ce qui se traduit par un comportement difficilement prédictible. La complexité peut donc caractériser un système "composé d'un grand nombre d'éléments interagissant sans coordination centrale, sans plan établi par un architecte, et menant spontanément à l'émergence de structures complexes" (Alain Barrat, directeur de recherche au Centre de physique théorique de Marseille); mais aussi caractériser des systèmes composés de peu d'éléments (voir le chaos déterministe).
Sciences numériquesLes sciences numériques (traduction de l'anglais computational sciences), autrement dénommées calcul scientifique ou informatique scientifique, ont pour objet la construction de modèles mathématiques et de méthodes d'analyse quantitative, en se basant sur l'utilisation des sciences du numérique, pour analyser et résoudre des problèmes scientifiques. Cette approche scientifique basée sur un recours massif aux modélisations informatiques et mathématiques et à la simulation se décline en : médecine numérique, biologie numérique, archéologie numérique, mécanique numérique, par exemple.
NP (complexité)La classe NP est une classe très importante de la théorie de la complexité. L'abréviation NP signifie « non déterministe polynomial » (« en »). Un problème de décision est dans NP s'il est décidé par une machine de Turing non déterministe en temps polynomial par rapport à la taille de l'entrée. Intuitivement, cela revient à dire qu'on peut vérifier « rapidement » (complexité polynomiale) si une solution candidate est bien solution.
Algorithme probabilisteEn algorithmique, un algorithme probabiliste, ou algorithme randomisé, est un algorithme qui utilise une source de hasard. Plus précisément le déroulement de l’algorithme fait appel à des données tirées au hasard. Par exemple à un certain point de l’exécution, on tire un bit 0 ou 1, selon la loi uniforme et si le résultat est 0, on fait une certaine action A et si c'est 1, on fait une autre action. On peut aussi tirer un nombre réel dans l'intervalle [0,1] ou un entier dans un intervalle [i..j].
Numerical linear algebraNumerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of.
Clé de chiffrementUne clé est un paramètre utilisé en entrée d'une opération cryptographique (chiffrement, déchiffrement, scellement, signature numérique, vérification de signature). Une clé de chiffrement peut être symétrique (cryptographie symétrique) ou asymétrique (cryptographie asymétrique). Dans le premier cas, la même clé sert à chiffrer et à déchiffrer. Dans le second cas on utilise deux clés différentes, la clé publique est utilisée au chiffrement alors que celle servant au déchiffrement est gardée secrète : la clé secrète, ou clé privée, et ne peut pas se déduire de la clé publique.