Suite logistiqueEn mathématiques, une suite logistique est une suite réelle simple, mais dont la récurrence n'est pas linéaire. Sa relation de récurrence est Suivant la valeur du paramètre μ (dans [0; 4] pour assurer que les valeurs de x restent dans [0; 1]), elle engendre soit une suite convergente, soit une suite soumise à oscillations, soit une suite chaotique. Souvent citée comme exemple de la complexité de comportement pouvant surgir d'une relation non linéaire simple, cette suite fut popularisée par le biologiste Robert May en 1976.
Attracteur de HénonL'attracteur de Hénon est un système dynamique à temps discret. C'est l'un des systèmes dynamiques ayant un comportement chaotique les plus étudiés. L'attracteur de Hénon prend tout point du plan (x, y) et lui associe le nouveau point : Il dépend de deux paramètres, a et b, qui ont pour valeurs canoniques : a = 1,4 et b = 0,3. Pour ces valeurs, l'attracteur de Hénon est chaotique. Pour d'autres valeurs de a et b, il peut être chaotique, intermittent ou converger vers une orbite périodique.
Bruit gaussienEn traitement du signal, un bruit gaussien est un bruit dont la densité de probabilité est une distribution gaussienne (loi normale). L'adjectif gaussien fait référence au mathématicien, astronome et physicien allemand Carl Friedrich Gauss. La densité de probabilité d'une variable aléatoire gaussienne est la fonction : où représente le niveau de gris, la valeur de gris moyenne et son écart type. Un cas particulier est le bruit blanc gaussien, dans lequel les valeurs à toute paire de temps sont identiquement distribuées et statistiquement indépendantes (et donc ).
Population modelA population model is a type of mathematical model that is applied to the study of population dynamics. Models allow a better understanding of how complex interactions and processes work. Modeling of dynamic interactions in nature can provide a manageable way of understanding how numbers change over time or in relation to each other. Many patterns can be noticed by using population modeling as a tool. Ecological population modeling is concerned with the changes in parameters such as population size and age distribution within a population.
Démécologiethumb|350px|Groupes familiaux d'éléphants, au sein d'une population régionale thumb|350px|Un groupe de « populations » constitue une métapopulation. Les populations d'animaux, plantes, champignons, microbes... contribuent au fonctionnement des écosystèmes, qui eux-mêmes forment des biomes et la biosphère ou symbiosphère (expression de Joël de Rosnay est le niveau planétaire d'intégration de toutes les échelles du Vivant (du gène à la somme des biomes (sans laquelle l'oxygène et donc la couche d'ozone n'existeraient pas) ; Le gène est représenté à part, car non vivant en tant que tel, mais support d'information et base du vivant.
BiomathématiqueLa biomathématique est le domaine d'étude qui réunit la biologie et les mathématiques. De façon précise les biomathématiques sont constituées par l'ensemble des méthodes et techniques mathématiques, numériques et informatiques qui permettent d'étudier et de modéliser les phénomènes et processus biologiques. Il s'agit donc bien d'une science fortement pluridisciplinaire que le mathématicien seul (ou le biologiste seul) est incapable de développer. Pour naître et vivre cette discipline exige des équipes interdisciplinaires mues par le sens du concret.
Tent mapIn mathematics, the tent map with parameter μ is the real-valued function fμ defined by the name being due to the tent-like shape of the graph of fμ. For the values of the parameter μ within 0 and 2, fμ the unit interval [0, 1] into itself, thus defining a discrete-time dynamical system on it (equivalently, a recurrence relation). In particular, iterating a point x0 in [0, 1] gives rise to a sequence : where μ is a positive real constant.
Bruit additif blanc gaussienLe bruit additif blanc gaussien est un modèle élémentaire de bruit utilisé en théorie de l'information pour imiter de nombreux processus aléatoires qui se produisent dans la nature. Les adjectifs indiquent qu'il est : additif il s'ajoute au bruit intrinsèque du système d'information ; blanc sa puissance est uniforme sur toute la largeur de bande de fréquences du système, par opposition avec un bruit coloré qui privilégie une bande de fréquences par analogie avec une lumière colorée dans le spectre visible ; gaussien il a une distribution normale dans le domaine temporel avec une moyenne nulle (voir bruit gaussien).
Modèle de KuramotoLe modèle de Kuramoto, proposé pour la première fois par Yoshiki Kuramoto (蔵本 由紀 Kuramoto Yoshiki), est un modèle mathématique utilisé pour décrire la synchronisation au sein des systèmes complexes. Plus précisément, il s'agit d'un modèle pour le comportement d'un grand nombre d'oscillateurs couplés. Sa formulation a été motivée par le comportement des oscillateurs dans les systèmes chimiques et biologiques, et il a trouvé de nombreuses applications dans les neurosciences ou les oscillations dynamiques de la propagation d'une flamme par exemple.
Oscillateur (électronique)vignette|Un oscillateur intégré à quartz. Un oscillateur électronique est un circuit dont la fonction est de produire un signal électrique périodique, de forme sinusoïdale, carrée, en dents de scie, ou quelconque. L'oscillateur peut avoir une fréquence fixe ou variable. Il existe plusieurs types d'oscillateurs électroniques ; les principaux sont : oscillateurs à circuit LC et un étage amplificateur, HF le plus souvent ; oscillateurs à déphasage avec étage RC, qui délivrent des signaux sinusoïdaux : l'exemple-type est l'oscillateur à pont de Wien ; générateur de créneaux ; oscillateur à quartz, très stable et de haute précision grâce à des résonateurs à micro-onde ; ils sont utilisés dans les horloges atomiques.