Effets spéciaux numériquesvignette|Image numérique : « La ferme des yeux » (en). Les effets spéciaux numériques, parfois appelés VFX numériques ou désignés par l'acronyme CGI (de l'anglais computer-generated imagery), désignent les effets spéciaux cinématographiques à base de programmes informatiques d'animation et d'. En 1973, John Whitney (1917-1995) est le premier artiste à réaliser des effets spéciaux numériques pour le long métrage Mondwest (en) de Michael Crichton. Quatre années plus tard, en 1977, est réalisé le film La guerre des étoiles (en) de George Lucas.
Fonction d'AckermannDans la théorie de la récursivité, la fonction d'Ackermann (aussi appelée fonction d'Ackermann-Péter) est un exemple simple de fonction récursive non récursive primitive, trouvée en 1926 par Wilhelm Ackermann. Elle est souvent présentée sous la forme qu'en a proposée la mathématicienne Rózsa Péter, comme une fonction à deux paramètres entiers naturels comme arguments et qui retourne un entier naturel comme valeur, noté en général A(m, n).
Mesh generationMesh generation is the practice of creating a mesh, a subdivision of a continuous geometric space into discrete geometric and topological cells. Often these cells form a simplicial complex. Usually the cells partition the geometric input domain. Mesh cells are used as discrete local approximations of the larger domain. Meshes are created by computer algorithms, often with human guidance through a GUI , depending on the complexity of the domain and the type of mesh desired.
Composition de fonctionsLa composition de fonctions (ou composition d’applications) est, en mathématiques, un procédé qui consiste, à partir de deux fonctions, à en construire une nouvelle. Pour cela, on utilise les images de la première fonction comme arguments pour la seconde (à condition que cela ait un sens). On parle alors de fonction composée (ou d'application composée). Soient X, Y et Z trois ensembles quelconques. Soient deux fonctions et . On définit la composée de f par g, notée , par On applique ici f à l'argument x, puis on applique g au résultat.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Structured systems analysis and design methodStructured Systems Analysis and Design Method (SSADM) is a systems approach to the analysis and design of information systems. SSADM was produced for the Central Computer and Telecommunications Agency, a UK government office concerned with the use of technology in government, from 1980 onwards. SSADM is a waterfall method for the analysis and design of information systems. SSADM can be thought to represent a pinnacle of the rigorous document-led approach to system design, and contrasts with more contemporary agile methods such as DSDM or Scrum.
TétrationLa tétration (ou encore nappe exponentielle, hyperpuissance, tour de puissances, super-exponentiation ou hyper4) est une « exponentiation itérée ». C'est le premier hyperopérateur après l'exponentiation. Le mot-valise tétration a été forgé par Reuben Goodstein sur la base du préfixe tétra- (quatre) et itération. La tétration est utilisée pour l'écriture des grands nombres. Elle suit l'addition, la multiplication et l'exponentiation comme indiqué ci-après : addition multiplication exponentiation tétration avec chaque fois b apparitions de la lettre a.
Framing (construction)Framing, in construction, is the fitting together of pieces to give a structure support and shape. Framing materials are usually wood, engineered wood, or structural steel. The alternative to framed construction is generally called mass wall construction, where horizontal layers of stacked materials such as log building, masonry, rammed earth, adobe, etc. are used without framing.
Intégrale de surfaceEn mathématiques, une intégrale de surface est une intégrale définie sur toute une surface qui peut être courbe dans l'espace. Pour une surface donnée, on peut intégrer sur un champ scalaire ou sur un champ vectoriel. Les intégrales de surface ont de nombreuses applications : par exemple, en physique, dans la théorie classique de l'électromagnétisme. Pour exprimer de façon explicite l'intégrale de surface, il faut généralement paramétrer la surface S en question en considérant un système de coordonnées curvilignes, comme la longitude et la latitude sur une sphère.
Surface (géométrie analytique)En géométrie analytique, on représente les surfaces, c'est-à-dire les ensembles de points sur lequel il est localement possible de se repérer à l'aide de deux coordonnées réelles, par des relations entre les coordonnées de leurs points, qu'on appelle équations de la surface ou par des représentations paramétriques. Cet article étudie les propriétés des surfaces que cette approche (appelée souvent extrinsèque) permet de décrire. Pour des résultats plus approfondis, voir Géométrie différentielle des surfaces.