Connecteur logiqueEn logique, un connecteur logique est un opérateur booléen utilisé dans le calcul des propositions. Comme dans toute approche logique, il faut distinguer un aspect syntaxique et un aspect sémantique. D'un point de vue syntaxique, les connecteurs sont des opérateurs dans un langage formel pour lesquels un certain nombre de règles définissent leur usage, au besoin complétées par une sémantique. Si l'on se place dans la logique classique, l'interprétation des variables se fait dans les booléens ou dans une extension multivalente de ceux-ci.
Extension abélienneEn algèbre générale, plus précisément en théorie de Galois, une extension abélienne est une extension de Galois dont le groupe de Galois est abélien. Lorsque ce groupe est cyclique, l'extension est dite cyclique. Toute extension finie d'un corps fini est une extension cyclique. L'étude de la théorie des corps de classes décrit de façon détaillée toutes les extensions abéliennes dans le cas des corps de nombres, et des corps de fonctions de courbes algébriques sur des corps finis, ainsi que dans le cas des corps locaux (Théorie du corps de classes local).
Decidability of first-order theories of the real numbersIn mathematical logic, a first-order language of the real numbers is the set of all well-formed sentences of first-order logic that involve universal and existential quantifiers and logical combinations of equalities and inequalities of expressions over real variables. The corresponding first-order theory is the set of sentences that are actually true of the real numbers. There are several different such theories, with different expressive power, depending on the primitive operations that are allowed to be used in the expression.
Construction des nombres réelsEn mathématiques, il existe différentes constructions des nombres réels, dont les deux plus connues sont : les coupures de Dedekind, qui définissent, via la théorie des ensembles, un réel comme l'ensemble des rationnels qui lui sont strictement inférieurs ; les suites de Cauchy, qui définissent, via l'analyse, un réel comme une suite de rationnels convergeant vers lui. C'est à partir des années 1860 que la nécessité de présenter une construction des nombres réels se fait de plus en plus pressante, dans le but d'asseoir l'analyse sur des fondements rigoureux.
Logique traditionnelleEn philosophie, certains nomment logique traditionnelle celle qui a existé en Occident après Aristote et avant l'avènement de la logique mathématique moderne. Elle fut dominante en Europe depuis l'Antiquité jusqu'à la fin du . La logique d'Aristote est présentée dans six documents connus sous le nom dOrganon. Deux de ces documents, les Premiers Analytiques et De l'interprétation, contiennent l'étude des jugements et de l'inférence formelle et c'est cette partie des œuvres d'Aristote qui est passée à la postérité.
Rationnel de GaussEn mathématiques, un est un nombre complexe dont les parties réelle et imaginaire sont des nombres rationnels. L'ensemble des rationnels de Gauss est donc C'est un sous-corps de C, généralement noté Q(i) ou Q[i]. Ces nombres tirent leur nom du mathématicien allemand Carl Friedrich Gauss. Q(i) est le corps de rupture du polynôme X + 1. C'est donc un corps quadratique imaginaire et un corps cyclotomique. L'anneau des entiers de Q(i) est l'anneau Z[i] des entiers de Gauss. Son discriminant est –4.
PointwiseIn mathematics, the qualifier pointwise is used to indicate that a certain property is defined by considering each value of some function An important class of pointwise concepts are the pointwise operations, that is, operations defined on functions by applying the operations to function values separately for each point in the domain of definition. Important relations can also be defined pointwise.
Fuzzy set operationsFuzzy set operations are a generalization of crisp set operations for fuzzy sets. There is in fact more than one possible generalization. The most widely used operations are called standard fuzzy set operations; they comprise: fuzzy complements, fuzzy intersections, and fuzzy unions. Let A and B be fuzzy sets that A,B ⊆ U, u is any element (e.g. value) in the U universe: u ∈ U. Standard complement The complement is sometimes denoted by ∁A or A∁ instead of ¬A.
PSPACE-completeIn computational complexity theory, a decision problem is PSPACE-complete if it can be solved using an amount of memory that is polynomial in the input length (polynomial space) and if every other problem that can be solved in polynomial space can be transformed to it in polynomial time. The problems that are PSPACE-complete can be thought of as the hardest problems in PSPACE, the class of decision problems solvable in polynomial space, because a solution to any one such problem could easily be used to solve any other problem in PSPACE.
Type-2 fuzzy sets and systemsType-2 fuzzy sets and systems generalize standard Type-1 fuzzy sets and systems so that more uncertainty can be handled. From the beginning of fuzzy sets, criticism was made about the fact that the membership function of a type-1 fuzzy set has no uncertainty associated with it, something that seems to contradict the word fuzzy, since that word has the connotation of much uncertainty. So, what does one do when there is uncertainty about the value of the membership function? The answer to this question was provided in 1975 by the inventor of fuzzy sets, Lotfi A.