Résumé
En logique, un connecteur logique est un opérateur booléen utilisé dans le calcul des propositions. Comme dans toute approche logique, il faut distinguer un aspect syntaxique et un aspect sémantique. D'un point de vue syntaxique, les connecteurs sont des opérateurs dans un langage formel pour lesquels un certain nombre de règles définissent leur usage, au besoin complétées par une sémantique. Si l'on se place dans la logique classique, l'interprétation des variables se fait dans les booléens ou dans une extension multivalente de ceux-ci. thumb|Table des connecteurs logiques. (organisés par valeur de vérité) thumb|Connecteurs logiques organisés en un diagramme de Hasse. Dans le cas de la logique bivalente classique le tableau suivant recense les seize fonctions booléennes associées aux entrées P et Q, ces entrées sont les variables ou prémisses des formules. Une sémantique possible de la logique intuitionniste se fait dans les modèles de Kripke. Grosso modo, un modèle de Kripke est un graphe étiqueté, dont les nœuds sont appelés des « mondes », les étiquettes sont des formules et la relation sous-jacente est dite relation d'accessibilité. Dans ces graphes, la sémantique d'une formule dont le connecteur principal est est un modèle de Kripke avec un monde étiqueté par la formule . La sémantique de la formule est définie à partir des sémantiques des composants de la formule. Si la formule est , la sémantique de se fera à partir des sémantiques de et . Dire que dans le modèle de Kripke , la formule étiquette le monde , s'écrit . Dans ce cas est un modèle de . Par exemple, supposons que la formule soit . Son connecteur principal est . La définition de la sémantique de fonctionne ainsi : pour pouvoir dire que , il faut que, dans le modèle , pour tout monde , accessible à partir de , autrement dit tel que , on ait : implique . Il faut dans ce cadre expliquer comment les connecteurs se comportent vis-à-vis des modalités. En logique classique, avec le tiers exclu, la sémantique est donnée (via le théorème de complétude du calcul propositionnel) par les tables de vérité.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.