Endomorphism ringIn mathematics, the endomorphisms of an abelian group X form a ring. This ring is called the endomorphism ring of X, denoted by End(X); the set of all homomorphisms of X into itself. Addition of endomorphisms arises naturally in a pointwise manner and multiplication via endomorphism composition. Using these operations, the set of endomorphisms of an abelian group forms a (unital) ring, with the zero map as additive identity and the identity map as multiplicative identity.
Méthode des tableauxvignette|200px|Représentation graphique d'un tableau propositionnel partiellement construit En théorie de la démonstration, les tableaux sémantiques sont une méthode de résolution du problème de la décision pour le calcul des propositions et les logiques apparentées, ainsi qu'une méthode de preuve pour la logique du premier ordre. La méthode des tableaux peut également déterminer la satisfiabilité des ensembles finis de formules de diverses logiques. C'est la méthode de preuve la plus populaire pour les logiques modales (Girle 2000).
Forme normale conjonctiveEn logique booléenne et en calcul des propositions, une formule en forme normale conjonctive ou FNC (en anglais, Conjunctive Normal Form, Clausal Normal Form ou CNF) est une conjonction de clauses, où une clause est une disjonction de littéraux. Les formules en FNC sont utilisées dans le cadre de la démonstration automatique de théorèmes ou encore dans la résolution du problème SAT (en particulier dans l'algorithme DPLL). Une expression logique est en FNC si et seulement si elle est une conjonction d'une ou plusieurs disjonction(s) d'un ou plusieurs littéraux.
Problème de la décisionEn logique mathématique, on appelle problème de la décision ou, sous son nom d'origine en allemand, Entscheidungsproblem, le fait de déterminer de façon mécanique (par un algorithme) si un énoncé est un théorème de la logique égalitaire du premier ordre, c’est-à-dire s'il se dérive dans un système de déduction sans autres axiomes que ceux de l'égalité (exemples : système à la Hilbert, calcul des séquents, déduction naturelle).
Langage récursifEn mathématiques, en logique et en informatique, un langage récursif est un type de langage formel qui est aussi appelé récursif, décidable, ou Turing-decidable. Il y a plusieurs définitions équivalentes de langage récursif. On peut définir cette notion directement, comme une généralisation de celle d'ensemble récursif (des sous-ensembles d'entiers ou de uples d'entiers), ou passer par des codages dans les entiers, en utilisant la théorie de la calculabilité.
Histoire de la logiqueL'histoire de la logique, en Occident, prend ses racines dans la philosophie et les mathématiques de la Grèce antique pour se développer en richesse au . Des développements parallèles ont notamment eu lieu en Chine et en Inde. Le développement de la logique dans le monde arabo-musulman s'intègre à celui de l'Europe, du fait de leur proximité. La logique chinoise est longtemps restée isolée des développements de la logique en Europe et dans le monde arabo-musulman. 400 ans avant notre ère, la fondation de l'école du moïsme est attribuée à Mozi.
Univers (logique)En mathématiques, et en particulier en théorie des ensembles et en logique mathématique, un univers est un ensemble (ou parfois une classe propre) ayant comme éléments tous les objets qu'on souhaite considérer dans un contexte donné. Structure (mathématiques) Dans de nombreuses utilisations élémentaires de la théorie des ensembles, on se place en réalité dans un ensemble général U (appelé parfois univers de référence), et les seuls ensembles considérés sont les éléments et les sous-ensembles de U ; c'est ce point de vue qui a amené Cantor à développer sa théorie en partant de U = R, l'ensemble des nombres réels.
Fonction caractéristique (théorie des ensembles)En mathématiques, une fonction caractéristique, ou fonction indicatrice, est une fonction définie sur un ensemble E qui explicite l’appartenance ou non à un sous-ensemble F de E de tout élément de E. Formellement, la fonction caractéristique d’un sous-ensemble F d’un ensemble E est une fonction : D'autres notations souvent employées pour la fonction caractéristique de F sont 1 et 1, voire I (i majuscule). Le terme de fonction indicatrice est parfois utilisé pour fonction caractéristique.