AmplitudeEn physique classique, on nomme amplitude la mesure scalaire (une coordonnée) d’un nombre positif caractérisant l’ampleur des variations d'une grandeur. Le plus souvent il s'agit de l'écart maximal par rapport à la valeur médiane (qui est aussi la valeur moyenne si la variation est symétrique). Cette définition diffère du langage courant, dans lequel l'amplitude désigne généralement l'écart entre les valeurs extrêmes d'une grandeur.
OptiqueL'optique est la branche de la physique qui traite de la lumière, de son comportement et de ses propriétés, du rayonnement électromagnétique à la vision en passant par les systèmes utilisant ou émettant de la lumière. Du fait de ses propriétés ondulatoires, le domaine de la lumière peut couvrir le lointain UV jusqu'au lointain IR en passant par les longueurs d'onde visibles. Ces propriétés recouvrent alors le domaine des ondes radio, micro-ondes, des rayons X et des radiations électromagnétiques.
Modulation d'amplitudeLa modulation d'amplitude ou MA (AM en anglais) est une technique utilisée pour moduler un signal. Elle consiste en la multiplication du signal à moduler par un signal de fréquence moins élevée. La modulation d'amplitude consiste à faire varier l'amplitude d'un signal de fréquence élevée, le signal porteur, en fonction d'un signal de plus basse fréquence, le signal modulant. Ce dernier est celui qui contient l'information à transmettre (voix, par exemple, recueillie par un microphone).
Linear polarizationIn electrodynamics, linear polarization or plane polarization of electromagnetic radiation is a confinement of the electric field vector or magnetic field vector to a given plane along the direction of propagation. The term linear polarization (French: polarisation rectiligne) was coined by Augustin-Jean Fresnel in 1822. See polarization and plane of polarization for more information. The orientation of a linearly polarized electromagnetic wave is defined by the direction of the electric field vector.
Polarisation (optique)La polarisation est une propriété qu'ont les ondes vectorielles (ondes qui peuvent osciller selon plus d'une orientation) de présenter une répartition privilégiée de l'orientation des vibrations qui les composent. Les ondes électromagnétiques, telles que la lumière, ou les ondes gravitationnelles ont ainsi des propriétés de polarisation. Les ondes mécaniques transverses dans les solides peuvent aussi être polarisées. Cependant, les ondes longitudinales (telles que les ondes sonores) ne sont pas concernées.
Formalisme de JonesLe formalisme de Jones est un formalisme matriciel permettant de décrire l'état de polarisation de la lumière, ou de manière générale d'une onde électromagnétique, et son évolution à travers un système optique. Ce formalisme doit son nom à son inventeur Robert C. Jones qui le définit en 1941. Dans ce formalisme, on représente la lumière polarisée par un vecteur de Jones et les éléments optiques linéaires sont représentés par des matrices de Jones.
PolariseurUn polariseur est un instrument d'optique qui sélectionne dans une onde lumineuse incidente une direction de polarisation préférentielle : la plupart des polariseurs permettent d'obtenir une lumière polarisée rectilignement dans une certaine direction. Dans ce cas, cette direction est appelée l’axe du polariseur. Mis en fin de système optique, le polariseur est appelé « analyseur ». Les polariseurs sont présents dans de nombreuses expériences d'optique et sont donc utilisés dans des instruments d'optique.
Étienne Louis MalusÉtienne Louis Malus (de son nom de famille complet Malus Dumitry), né à Paris le et mort à Paris le , est un ingénieur, physicien et mathématicien français. Étienne Louis Malus naît le à Paris, rue Sainte-Avoye. Son père, Anne-Louis Malus Dumitry, était Chevalier Conseiller du Roi, Trésorier de France au Bureau des finances et grand voyer de la Généralité de Paris. Sa mère se nommait Louise-Nicole-Charlotte Desboves. Le , il est admis à l’École du génie de Mézières, dont il est renvoyé comme suspect la même année.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Loi de Cauchy (probabilités)La loi de Cauchy, appelée aussi loi de Lorentz, est une loi de probabilité continue qui doit son nom au mathématicien Augustin Louis Cauchy. Une variable aléatoire X suit une loi de Cauchy si sa densité , dépendant des deux paramètres et ( > 0) est définie par : La fonction ainsi définie s'appelle une lorentzienne. Elle apparaît par exemple en spectroscopie pour modéliser des raies d'émission. Cette distribution est symétrique par rapport à (paramètre de position), le paramètre donnant une information sur l'étalement de la fonction (paramètre d'échelle).