Mémoire spatialevignette|La mémoire spatiale est nécessaire pour naviguer dans un environnement. La mémoire spatiale est la partie de la mémoire d'un individu responsable de l'enregistrement des informations concernant l'espace environnant et l'orientation spatiale de l'individu dans celui-ci. La mémoire spatiale est ainsi requise pour la navigation spatiale dans un lieu connu, comme dans un quartier familier. Elle est étudiée en neuroscience (chez le rat) et en psychologie cognitive (chez l'homme).
Série temporellethumb|Exemple de visualisation de données montrant une tendances à moyen et long terme au réchauffement, à partir des séries temporelles de températures par pays (ici regroupés par continents, du nord au sud) pour les années 1901 à 2018. Une série temporelle, ou série chronologique, est une suite de valeurs numériques représentant l'évolution d'une quantité spécifique au cours du temps. De telles suites de variables aléatoires peuvent être exprimées mathématiquement afin d'en analyser le comportement, généralement pour comprendre son évolution passée et pour en prévoir le comportement futur.
Adrien-Marie LegendreAdrien-Marie Legendre, né le à Paris et mort le dans la même ville, est un mathématicien français. Adrien-Marie Legendre naît au sein d'une famille aisée, qui lui permet de mener une vie tranquille consacrée aux mathématiques. Conscients de leur statut social et des limites imposées aux familles roturières, ses parents l'inscrivent dans l'une des meilleures écoles de l'époque, le collège Mazarin. Son professeur, le père Marie, successeur du père Lacaille, remarque les grandes dispositions du jeune élève pour les mathématiques et s'applique à stimuler son talent.
Ondelettethumb|Ondelette de Daubechies d'ordre 2. Une ondelette est une fonction à la base de la décomposition en ondelettes, décomposition similaire à la transformée de Fourier à court terme, utilisée dans le traitement du signal. Elle correspond à l'idée intuitive d'une fonction correspondant à une petite oscillation, d'où son nom. Cependant, elle comporte deux différences majeures avec la transformée de Fourier à court terme : elle peut mettre en œuvre une base différente, non forcément sinusoïdale ; il existe une relation entre la largeur de l'enveloppe et la fréquence des oscillations : on effectue ainsi une homothétie de l'ondelette, et non seulement de l'oscillation.
Singular spectrum analysisIn time series analysis, singular spectrum analysis (SSA) is a nonparametric spectral estimation method. It combines elements of classical time series analysis, multivariate statistics, multivariate geometry, dynamical systems and signal processing. Its roots lie in the classical Karhunen (1946)–Loève (1945, 1978) spectral decomposition of time series and random fields and in the Mañé (1981)–Takens (1981) embedding theorem. SSA can be an aid in the decomposition of time series into a sum of components, each having a meaningful interpretation.
Discrete wavelet transformIn numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any wavelet transform for which the wavelets are discretely sampled. As with other wavelet transforms, a key advantage it has over Fourier transforms is temporal resolution: it captures both frequency and location information (location in time). Haar wavelet The first DWT was invented by Hungarian mathematician Alfréd Haar. For an input represented by a list of numbers, the Haar wavelet transform may be considered to pair up input values, storing the difference and passing the sum.
Spatial cognitionSpatial cognition is the acquisition, organization, utilization, and revision of knowledge about spatial environments. It is most about how animals including humans behave within space and the knowledge they built around it, rather than space itself. These capabilities enable individuals to manage basic and high-level cognitive tasks in everyday life. Numerous disciplines (such as cognitive psychology, neuroscience, artificial intelligence, geographic information science, cartography, etc.