Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Estimation statisticsEstimation statistics, or simply estimation, is a data analysis framework that uses a combination of effect sizes, confidence intervals, precision planning, and meta-analysis to plan experiments, analyze data and interpret results. It complements hypothesis testing approaches such as null hypothesis significance testing (NHST), by going beyond the question is an effect present or not, and provides information about how large an effect is. Estimation statistics is sometimes referred to as the new statistics.
Test de WaldLe test de Wald est un test paramétrique économétrique dont l'appellation vient du mathématicien américain d'origine hongroise Abraham Wald (-) avec une grande variété d'utilisations. Chaque fois que nous avons une relation au sein des ou entre les éléments de données qui peuvent être exprimées comme un modèle statistique avec des paramètres à estimer, et tout cela à partir d'un échantillon, le test de Wald peut être utilisé pour « tester la vraie valeur du paramètre » basé sur l'estimation de l'échantillon.
Sample maximum and minimumIn statistics, the sample maximum and sample minimum, also called the largest observation and smallest observation, are the values of the greatest and least elements of a sample. They are basic summary statistics, used in descriptive statistics such as the five-number summary and Bowley's seven-figure summary and the associated box plot. The minimum and the maximum value are the first and last order statistics (often denoted X(1) and X(n) respectively, for a sample size of n).
Sliding mode controlIn control systems, sliding mode control (SMC) is a nonlinear control method that alters the dynamics of a nonlinear system by applying a discontinuous control signal (or more rigorously, a set-valued control signal) that forces the system to "slide" along a cross-section of the system's normal behavior. The state-feedback control law is not a continuous function of time. Instead, it can switch from one continuous structure to another based on the current position in the state space.
Nonlinear mixed-effects modelNonlinear mixed-effects models constitute a class of statistical models generalizing linear mixed-effects models. Like linear mixed-effects models, they are particularly useful in settings where there are multiple measurements within the same statistical units or when there are dependencies between measurements on related statistical units. Nonlinear mixed-effects models are applied in many fields including medicine, public health, pharmacology, and ecology.
Méthode de Monte-CarloUne méthode de Monte-Carlo, ou méthode Monte-Carlo, est une méthode algorithmique visant à calculer une valeur numérique approchée en utilisant des procédés aléatoires, c'est-à-dire des techniques probabilistes. Les méthodes de Monte-Carlo sont particulièrement utilisées pour calculer des intégrales en dimensions plus grandes que 1 (en particulier, pour calculer des surfaces et des volumes). Elles sont également couramment utilisées en physique des particules, où des simulations probabilistes permettent d'estimer la forme d'un signal ou la sensibilité d'un détecteur.
Statistique mathématiquevignette|Une régression linéaire. Les statistiques, dans le sens populaire du terme, traitent à l'aide des mathématiques l'étude de groupe d'une population. En statistique descriptive, on se contente de décrire un échantillon à partir de grandeurs comme la moyenne, la médiane, l'écart type, la proportion, la corrélation, etc. C'est souvent la technique qui est utilisée dans les recensements. Dans un sens plus large, la théorie statistique est utilisée en recherche dans un but inférentiel.
Régression logistiqueEn statistiques, la régression logistique ou modèle logit est un modèle de régression binomiale. Comme pour tous les modèles de régression binomiale, il s'agit d'expliquer au mieux une variable binaire (la présence ou l'absence d'une caractéristique donnée) par des observations réelles nombreuses, grâce à un modèle mathématique. En d'autres termes d'associer une variable aléatoire de Bernoulli (génériquement notée ) à un vecteur de variables aléatoires . La régression logistique constitue un cas particulier de modèle linéaire généralisé.
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.