In statistics, the Wald test (named after Abraham Wald) assesses constraints on statistical parameters based on the weighted distance between the unrestricted estimate and its hypothesized value under the null hypothesis, where the weight is the precision of the estimate. Intuitively, the larger this weighted distance, the less likely it is that the constraint is true. While the finite sample distributions of Wald tests are generally unknown, it has an asymptotic χ2-distribution under the null hypothesis, a fact that can be used to determine statistical significance.
Together with the Lagrange multiplier test and the likelihood-ratio test, the Wald test is one of three classical approaches to hypothesis testing. An advantage of the Wald test over the other two is that it only requires the estimation of the unrestricted model, which lowers the computational burden as compared to the likelihood-ratio test. However, a major disadvantage is that (in finite samples) it is not invariant to changes in the representation of the null hypothesis; in other words, algebraically equivalent expressions of non-linear parameter restriction can lead to different values of the test statistic. That is because the Wald statistic is derived from a Taylor expansion, and different ways of writing equivalent nonlinear expressions lead to nontrivial differences in the corresponding Taylor coefficients. Another aberration, known as the Hauck–Donner effect, can occur in binomial models when the estimated (unconstrained) parameter is close to the boundary of the parameter space—for instance a fitted probability being extremely close to zero or one—which results in the Wald test no longer monotonically increasing in the distance between the unconstrained and constrained parameter.
Under the Wald test, the estimated that was found as the maximizing argument of the unconstrained likelihood function is compared with a hypothesized value . In particular, the squared difference is weighted by the curvature of the log-likelihood function.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course is neither an introduction to the mathematics of statistics nor an introduction to a statistics program such as R. The aim of the course is to understand statistics from its experimental d
Inference from the particular to the general based on probability models is central to the statistical method. This course gives a graduate-level account of the main ideas of statistical inference.
Le test du multiplicateur de Lagrange (LM) ou test de score ou test de Rao est un principe général pour tester des hypothèses sur les paramètres dans un cadre de vraisemblance. L'hypothèse sous le test est exprimée comme une ou plusieurs contraintes sur les valeurs des paramètres. La statistique du test LM ne nécessite une maximisation que dans cet espace contraint des paramètres (en particulier si l'hypothèse à tester est de la forme alors ).
Le test de Wald est un test paramétrique économétrique dont l'appellation vient du mathématicien américain d'origine hongroise Abraham Wald (-) avec une grande variété d'utilisations. Chaque fois que nous avons une relation au sein des ou entre les éléments de données qui peuvent être exprimées comme un modèle statistique avec des paramètres à estimer, et tout cela à partir d'un échantillon, le test de Wald peut être utilisé pour « tester la vraie valeur du paramètre » basé sur l'estimation de l'échantillon.
En statistique, le test du khi carré, aussi dit du khi-deux, d’après sa désignation symbolique , est un test statistique où la statistique de test suit une loi du sous l'hypothèse nulle. Par exemple, il permet de tester l'adéquation d'une série de données à une famille de lois de probabilité ou de tester l'indépendance entre deux variables aléatoires. Ce test a été proposé par le statisticien Karl Pearson en 1900.
Explore l'estimation de la probabilité maximale et les tests d'hypothèses multivariées, y compris les défis et les stratégies pour tester plusieurs hypothèses.
Couvre les méthodes de test du rapport de vraisemblance et de test d'hypothèse à l'aide d'estimations maximales de vraisemblance.
Explore les tests d'hypothèse, le théorème de Wilks, les valeurs p, les intervalles de confiance et les quantités pivotantes.