Méthodes de quadrature de GaussDans le domaine mathématique de l'analyse numérique, les méthodes de quadrature sont des approximations de la valeur numérique d'une intégrale. En général, on remplace le calcul de l'intégrale par une somme pondérée prise en un certain nombre de points du domaine d'intégration (voir calcul numérique d'une intégrale pour plus d'informations). La méthode de quadrature de Gauss, du nom de Carl Friedrich Gauss, est une méthode de quadrature exacte pour un polynôme de degré 2n – 1 avec n points pris sur le domaine d'intégration.
Interpolation d'Hermitethumb|Comparaison graphique entre interpolation lagrangienne (en rouge) et hermitienne (en bleu) de la fonction (en noir) en trois points équidistants -1, 1/2, 2. En analyse numérique, l'interpolation d'Hermite, nommée d'après le mathématicien Charles Hermite, est une extension de l'interpolation de Lagrange, qui consiste, pour une fonction dérivable donnée et un nombre fini de points donnés, à construire un polynôme qui est à la fois interpolateur (c'est-à-dire dont les valeurs aux points donnés coïncident avec celles de la fonction) et osculateur (c'est-à-dire dont les valeurs de la dérivée aux points donnés coïncident avec celles de la dérivée de la fonction).
Polynôme de BernoulliEn mathématiques, les polynômes de Bernoulli apparaissent dans l'étude de beaucoup de fonctions spéciales et en particulier, la fonction zêta de Riemann ; des polynômes analogues, correspondant à une fonction génératrice voisine, sont connus sous le nom de polynômes d'Euler. Les polynômes de Bernoulli sont l'unique suite de polynômes telle que : La fonction génératrice pour les polynômes de Bernoulli est La fonction génératrice pour les polynômes d'Euler est Les nombres de Bernoulli sont donnés par .
Polynôme de BernsteinLes polynômes de Bernstein, nommés ainsi en l'honneur du mathématicien russe Sergueï Bernstein (1880-1968), permettent de donner une démonstration constructive et probabilistedu théorème d'approximation de Weierstrass. Ils sont également utilisés dans la formulation générale des courbes de Bézier. Pour un degré m ≥ 0, il y a m + 1 polynômes de Bernstein B, ..., B définis, sur l'intervalle [0 ; 1], par où les sont les coefficients binomiaux. Les m + 1 polynômes de Bernstein forment une base de l'espace vectoriel des polynômes de degré au plus m.
Différences diviséesEn mathématiques, les différences divisées correspondent à une discrétisation des dérivées successives d'une fonction. Ce sont des quantités définies et calculées de manière récursive en généralisant la formule du taux d'accroissement. Elles sont utilisées en particulier en interpolation newtonienne. Étant donnés points d'abscisses distinctes, les différences divisées sont définies de la manière suivante : Pour toute fonction telle que , on note parfois la différence divisée .
Direct multiple shooting methodIn the area of mathematics known as numerical ordinary differential equations, the direct multiple shooting method is a numerical method for the solution of boundary value problems. The method divides the interval over which a solution is sought into several smaller intervals, solves an initial value problem in each of the smaller intervals, and imposes additional matching conditions to form a solution on the whole interval. The method constitutes a significant improvement in distribution of nonlinearity and numerical stability over single shooting methods.
Méthode de RombergEn analyse numérique, la méthode d'intégration de Romberg est une méthode récursive de calcul numérique d'intégrale, fondée sur l'application du procédé d'extrapolation de Richardson à la méthode des trapèzes. Cette technique d'accélération permet d'améliorer l'ordre de convergence de la méthode des trapèzes, en appliquant cette dernière à des divisions dyadiques successives de l'intervalle d'étude et en formant une combinaison judicieuse.
Méthode de factorisation de Fermatvignette|Pierre de Fermat En arithmétique modulaire, la méthode de factorisation de Fermat est un algorithme de décomposition en produit de facteurs premiers d'un entier naturel. L'intuition est la suivante. Tout entier naturel impair N se décompose en la différence de deux carrés : N = a – b. Algébriquement, cette différence se factorise en (a + b)(a – b) et, si ni a + b ni a – b n'est égal à 1, alors ce sont des facteurs non triviaux de N. Il existe une telle représentation pour tout nombre impair composé.
Leibniz formula for πIn mathematics, the Leibniz formula for pi, named after Gottfried Wilhelm Leibniz, states that an alternating series. It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series), and was later independently rediscovered by James Gregory in 1671 and Leibniz in 1673.
Zéro d'une fonctionEn mathématiques, un zéro ou point d'annulation d'une fonction est une valeur en laquelle cette fonction s'annule. Autrement dit, il s'agit d'un antécédent de la valeur zéro. En particulier en analyse réelle, les zéros d'une fonction d'une variable correspondent aux abscisses des points d'intersection de sa courbe avec l'axe des abscisses. La détermination des zéros d'une fonction revient à résoudre l'équation . Les racines d'un polynôme sont les zéros de sa fonction polynomiale associée.