Théorie des nœudsthumb|right|Représentation d’un nœud torique de type (3, 8). La théorie des nœuds est une branche de la topologie qui consiste en l'étude mathématique de courbes présentant des liaisons avec elles-mêmes, un « bout de ficelle » idéalisé en lacets. Elle est donc très proche de la théorie des tresses qui comporte plusieurs chemins ou « bouts de ficelle ». left|thumb|Nœuds triviaux La théorie des nœuds a commencé vers 1860 et avec des travaux de Carl Friedrich Gauss liés à l'électromagnétisme.
Nœud (mathématiques)En mathématiques, et plus particulièrement en géométrie et en topologie algébrique, un nœud est un plongement d'un cercle dans R, l'espace euclidien de dimension 3, considéré à des déformations continues près. Une différence essentielle entre les nœuds usuels et les nœuds mathématiques est que ces derniers sont fermés (sans extrémités permettant de les nouer ou de les dénouer) ; les propriétés physiques des nœuds réels, telles que la friction ou l'épaisseur des cordes, sont généralement également négligées.
Nœud de trèflevignette|Faire un nœud de trèfle (vidéo) vignette|Surface de Seifert associée à un nœud de trèfle : il en forme le bord. En théorie des nœuds, le nœud de trèfle est le nœud le plus simple après le nœud trivial. C'est le seul nœud premier à trois croisements. On peut aussi le décrire comme nœud torique de type (2,3), son mot dans le groupe de tresses étant σ13. Une autre description (liée à la précédente) est l'intersection de la sphère unité dans C2 avec la courbe plane complexe d'équation .
Nœud (lien)vignette|upright=1.4|Nœuds dans "Nordisk familjebok", 1911: 1. Épissure 2. Nœud de tire-veille 3. Nœud en queue de cochon 4. Wall and crown knot 5. Nœud de ride 6. Nœud de hauban 7. Bonnet turc 8. Demi-nœud, Nœud en huit 9. Nœud plat 10. Nœud de grappin vignette|upright=1.4|Nœuds dans "Le Larousse pour tous", 1909. Un nœud est l'enlacement ou l'entrecroisement d'une ou de plusieurs cordes, ou tout autres objets flexibles et de forme filaire (comme un fil, une sangle, un câble, un ruban).
Chiral knotIn the mathematical field of knot theory, a chiral knot is a knot that is not equivalent to its mirror image (when identical while reversed). An oriented knot that is equivalent to its mirror image is an amphicheiral knot, also called an achiral knot. The chirality of a knot is a knot invariant. A knot's chirality can be further classified depending on whether or not it is invertible. There are only five knot symmetry types, indicated by chirality and invertibility: fully chiral, invertible, positively amphicheiral noninvertible, negatively amphicheiral noninvertible, and fully amphicheiral invertible.
3-sphèrevignette|300 px|La 3-sphère en rotation, projetée dans R3. En mathématiques, et plus précisément en géométrie, une 3-sphère est l'analogue d'une sphère en dimension quatre. C'est l'ensemble des points équidistants d'un point central fixé dans un espace euclidien à 4 dimensions. Tout comme une sphère ordinaire (ou 2-sphère) est une surface bidimensionnelle formant la frontière d'une boule en trois dimensions, une 3-sphère est un objet à trois dimensions formant la frontière d'une boule à quatre dimensions.
N-sphèreEn géométrie, la sphère de dimension n, l'hypersphère ou n-sphère est une généralisation de la sphère à un espace euclidien de dimension quelconque. L'hypersphère constitue un des exemples les plus simples de variété, elle est plus précisément une hypersurface de l'espace euclidien , notée en général . Soient E un espace euclidien de dimension n + 1, A un point de E, et R un nombre réel strictement positif. On appelle hypersphère de centre A et de rayon R l'ensemble des points M dont la distance à A vaut R.
Knot polynomialIn the mathematical field of knot theory, a knot polynomial is a knot invariant in the form of a polynomial whose coefficients encode some of the properties of a given knot. The first knot polynomial, the Alexander polynomial, was introduced by James Waddell Alexander II in 1923. Other knot polynomials were not found until almost 60 years later. In the 1960s, John Conway came up with a skein relation for a version of the Alexander polynomial, usually referred to as the Alexander–Conway polynomial.
Sphère de RiemannEn mathématiques, la sphère de Riemann est une manière de prolonger le plan des nombres complexes avec un point additionnel à l'infini, de manière que certaines expressions mathématiques deviennent convergentes et élégantes, du moins dans certains contextes. Déjà envisagée par le mathématicien Carl Friedrich Gauss, elle est baptisée du nom de son élève Bernhard Riemann. Ce plan s'appelle également la droite projective complexe, dénoté .
Recuit simuléEn algorithmique, le recuit simulé est une méthode empirique (métaheuristique) d'optimisation, inspirée d'un processus, le recuit, utilisé en métallurgie. On alterne dans cette dernière des cycles de refroidissement lent et de réchauffage (recuit) qui ont pour effet de minimiser l'énergie du matériau. Cette méthode est transposée en optimisation pour trouver les extrema d'une fonction. Elle a été mise au point par trois chercheurs de la société IBM, S. Kirkpatrick, C.D. Gelatt et M.P. Vecchi en 1983, et indépendamment par V.