Monopôle magnétiqueUn monopôle magnétique est une particule hypothétique qui porterait une masse (ou charge) magnétique ponctuelle, au contraire des aimants habituels qui possèdent deux pôles magnétiques opposés. L'existence de monopôles magnétiques est exclue par l'électromagnétisme classique et par la théorie de la relativité, mais en 1931 Paul Dirac en a démontré l'existence théorique dans le cadre de la physique quantique. En septembre 2009, des chercheurs ont observé des quasiparticules artificielles présentant les propriétés du monopôle magnétique.
ThéorieUne théorie (du grec theoria, « contempler, observer, examiner ») est un ensemble cohérent, si elle prétend à la scientificité, d'explications, de notions ou d'idées sur un sujet précis, pouvant inclure des lois et des hypothèses, induites par l'accumulation de faits provenant de l'observation, l'expérimentation ou, dans le cas des mathématiques, déduites d'une base axiomatique donnée : théorie des matrices, des torseurs, des probabilités.
Représentation de HeisenbergEn mécanique quantique, la représentation de Heisenberg est une des trois formulations et modes de traitement des problèmes dépendant du temps dans le cadre de la mécanique quantique classique. Dans cette représentation, les opérateurs du système évoluent avec le temps alors que le vecteur d'état quantique ne dépend pas du temps. Remarque : La représentation de Heisenberg ne doit pas être confondue avec la « mécanique des matrices », quelquefois appelée « mécanique quantique de Heisenberg ».
Hill tetrahedronIn geometry, the Hill tetrahedra are a family of space-filling tetrahedra. They were discovered in 1896 by M. J. M. Hill, a professor of mathematics at the University College London, who showed that they are scissor-congruent to a cube. For every , let be three unit vectors with angle between every two of them. Define the Hill tetrahedron as follows: A special case is the tetrahedron having all sides right triangles, two with sides and two with sides . Ludwig Schläfli studied as a special case of the orthoscheme, and H.
Composé de deux tétraèdresvignette|Paire formée de deux tétraèdres duaux En géométrie, un composé de deux tétraèdres est la figure formée par le chevauchement de deux tétraèdres, en général implicitement supposés réguliers. octangle étoilé Il existe un seul composé polyédrique uniforme : l'octangle étoilé, ayant la symétrie octaédrique (d'ordre 48) et les mêmes 8 sommets que le cube. Voici des composés moins symétriques. le facettage d'un cuboïde rectangulaire crée un composé de deux tétragones ou disphenoïdes rhombiques, avec pour intersection une bipyramide.
Unification of theories in physicsUnification of theories about observable fundamental phenomena of nature is one of the primary goals of physics. The two great unifications to date are Isaac Newton’s unification of gravity and astronomy, and James Clerk Maxwell’s unification of electromagnetism; the latter has been further unified with the concept of electroweak interaction. This process of "unifying" forces continues today, with the ultimate goal of finding a theory of everything.
Goursat tetrahedronIn geometry, a Goursat tetrahedron is a tetrahedral fundamental domain of a Wythoff construction. Each tetrahedral face represents a reflection hyperplane on 3-dimensional surfaces: the 3-sphere, Euclidean 3-space, and hyperbolic 3-space. Coxeter named them after Édouard Goursat who first looked into these domains. It is an extension of the theory of Schwarz triangles for Wythoff constructions on the sphere. A Goursat tetrahedron can be represented graphically by a tetrahedral graph, which is in a dual configuration of the fundamental domain tetrahedron.
Sphère médianevignette| Un polyèdre et sa sphère médiane en bleu. Les cercles rouges sont les limites des calottes sphériques dans lesquelles la surface de la sphère est visible depuis chaque sommet. vignette|Cube et son octaèdre dual avec sphère médiane commune. En géométrie, la sphère médiane ou intersphère d'un polyèdre est une sphère qui est tangente à chaque arête du polyèdre, c'est-à-dire qu'elle touche chacune des arêtes en exactement un point.
Immirzi parameterThe Immirzi parameter (also known as the Barbero–Immirzi parameter) is a numerical coefficient appearing in loop quantum gravity (LQG), a nonperturbative theory of quantum gravity. The Immirzi parameter measures the size of the quantum of area in Planck units. As a result, its value is currently fixed by matching the semiclassical black hole entropy, as calculated by Stephen Hawking, and the counting of microstates in loop quantum gravity.