Méthode expérimentaleLes méthodes expérimentales scientifiques consistent à tester la validité d'une hypothèse, en reproduisant un phénomène (souvent en laboratoire) et en faisant varier un paramètre. Le paramètre que l'on fait varier est impliqué dans l'hypothèse. Le résultat de l'expérience valide ou non l'hypothèse. La démarche expérimentale est appliquée dans les recherches dans des sciences telles que, par exemple, la biologie, la physique, la chimie, l'informatique, la psychologie, ou encore l'archéologie.
Generative grammarGenerative grammar, or generativism ˈdʒɛnərətɪvɪzəm, is a linguistic theory that regards linguistics as the study of a hypothesised innate grammatical structure. It is a biological or biologistic modification of earlier structuralist theories of linguistics, deriving ultimately from glossematics. Generative grammar considers grammar as a system of rules that generates exactly those combinations of words that form grammatical sentences in a given language.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Grammaire générative et transformationnelleLa grammaire générative et transformationnelle est une théorie syntaxique s’inscrivant dans le courant de la linguistique générative. Majoritairement présente en Amérique du Nord, elle s’est développée depuis 1957 sous l’impulsion de Noam Chomsky. Cette théorie tente de caractériser la connaissance de la langue qui permet l'acte effectif du locuteur-auditeur. La grammaire générative est basée sur la distinction entre compétence et performance (connaissance que le locuteur-auditeur a de sa langue contre l’emploi effectif de la langue dans des situations concrètes).
Modèle discriminatifDiscriminative models, also referred to as conditional models, are a class of logistical models used for classification or regression. They distinguish decision boundaries through observed data, such as pass/fail, win/lose, alive/dead or healthy/sick. Typical discriminative models include logistic regression (LR), conditional random fields (CRFs) (specified over an undirected graph), decision trees, and many others. Typical generative model approaches include naive Bayes classifiers, Gaussian mixture models, variational autoencoders, generative adversarial networks and others.
Modèle de Markov cachéUn modèle de Markov caché (MMC, terme et définition normalisés par l’ISO/CÉI [ISO/IEC 2382-29:1999]) — (HMM)—, ou plus correctement (mais non employé) automate de Markov à états cachés, est un modèle statistique dans lequel le système modélisé est supposé être un processus markovien de paramètres inconnus. Contrairement à une chaîne de Markov classique, où les transitions prises sont inconnues de l'utilisateur mais où les états d'une exécution sont connus, dans un modèle de Markov caché, les états d'une exécution sont inconnus de l'utilisateur (seuls certains paramètres, comme la température, etc.
Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.
Théorie des modèlesLa théorie des modèles est une branche de la logique mathématique qui traite de la construction et de la classification des structures. Elle définit en particulier les modèles des théories axiomatiques, l'objectif étant d'interpréter les structures syntaxiques (termes, formules, démonstrations...) dans des structures mathématiques (ensemble des entiers naturels, groupes, univers...) de façon à leur associer des concepts de nature sémantique (comme le sens ou la vérité).
Système formelUn système formel est une modélisation mathématique d'un langage en général spécialisé. Les éléments linguistiques, mots, phrases, discours, etc., sont représentés par des objets finis (entiers, suites, arbres ou graphes finis...). Le propre d'un système formel est que la correction au sens grammatical de ses éléments est vérifiable algorithmiquement, c'est-à-dire que ceux-ci forment un ensemble récursif.
Loi des grands nombresvignette|Visualisation de la loi des grands nombres En mathématiques, la loi des grands nombres permet d’interpréter la probabilité comme une fréquence de réalisation, justifiant ainsi le principe des sondages, et présente l’espérance comme une moyenne. Plus formellement, elle signifie que la moyenne empirique, calculée sur les valeurs d’un échantillon, converge vers l’espérance lorsque la taille de l’échantillon tend vers l’infini. Plusieurs théorèmes expriment cette loi, pour différents types de convergence en théorie des probabilités.