Allocation de Dirichlet latenteDans le domaine du traitement automatique des langues, l’allocation de Dirichlet latente (de l’anglais Latent Dirichlet Allocation) ou LDA est un modèle génératif probabiliste permettant d’expliquer des ensembles d’observations, par le moyen de groupes non observés, eux-mêmes définis par des similarités de données. Par exemple, si les observations () sont les mots collectés dans un ensemble de documents textuels (), le modèle LDA suppose que chaque document () est un mélange () d’un petit nombre de sujets ou thèmes ( topics), et que la génération de chaque occurrence d’un mot () est attribuable (probabilité) à l’un des thèmes () du document.
Speeded Up Robust FeaturesSpeeded Up Robust Features (SURF), que l'on peut traduire par caractéristiques robustes accélérées, est un algorithme de détection de caractéristique et un descripteur, présenté par des chercheurs de l'ETH Zurich et de la Katholieke Universiteit Leuven pour la première fois en 2006 puis dans une version révisée en 2008. Il est utilisé dans le domaine de vision par ordinateur, pour des tâches de détection d'objet ou de reconstruction 3D.
Image numériqueL'appellation d'image numérique désigne toute (dessin, icône, photographie...) acquise, créée, traitée et stockée sous forme binaire : acquise par des convertisseurs analogique-numérique situés dans des dispositifs comme les scanners, les appareils photo ou les caméscopes numériques, les cartes d’acquisition vidéo (qui numérisent directement une source comme la télévision) créée directement par des programmes informatiques, grâce à une souris, des tablettes graphiques ou par de la modélisation 3D (ce que l’on appelle, par abus de langage, les « images de synthèse ») ; traitée grâce à des outils graphiques, de façon à la transformer, à en modifier la taille, les couleurs, d’y ajouter ou d'en supprimer des éléments, d’y appliquer des filtres variés stockée sur un support informatique (clé USB, SSD, disque dur, CD-ROM.
Ridge detectionIn , ridge detection is the attempt, via software, to locate ridges in an , defined as curves whose points are local maxima of the function, akin to geographical ridges. For a function of N variables, its ridges are a set of curves whose points are local maxima in N − 1 dimensions. In this respect, the notion of ridge points extends the concept of a local maximum. Correspondingly, the notion of valleys for a function can be defined by replacing the condition of a local maximum with the condition of a local minimum.
Détection de contoursEn et en vision par ordinateur, on appelle détection de contours les procédés permettant de repérer les points d'une qui correspondent à un changement brutal de l'intensité lumineuse. Ces changements de propriétés de l' indiquent en général des éléments importants de structure dans l'objet représenté. Ces éléments incluent des discontinuités dans la profondeur, dans l'orientation d'une surface, dans les propriétés d'un matériau et dans l'éclairage d'une scène.
Indexation automatique de documentsL’indexation automatique de documents est un domaine de l'informatique et des sciences de l'information et des bibliothèques qui utilise des méthodes logicielles pour organiser un ensemble de documents et faciliter ultérieurement la recherche de contenu dans cette collection. La multiplicité des types de documents (textuels, medias, audiovisuels, Web) donne lieu à des approches très différentes, notamment en termes de représentation des données.
Dirichlet-multinomial distributionIn probability theory and statistics, the Dirichlet-multinomial distribution is a family of discrete multivariate probability distributions on a finite support of non-negative integers. It is also called the Dirichlet compound multinomial distribution (DCM) or multivariate Pólya distribution (after George Pólya). It is a compound probability distribution, where a probability vector p is drawn from a Dirichlet distribution with parameter vector , and an observation drawn from a multinomial distribution with probability vector p and number of trials n.
Digital image processingDigital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
Object co-segmentationIn computer vision, object co-segmentation is a special case of , which is defined as jointly segmenting semantically similar objects in multiple images or video frames. It is often challenging to extract segmentation masks of a target/object from a noisy collection of images or video frames, which involves object discovery coupled with . A noisy collection implies that the object/target is present sporadically in a set of images or the object/target disappears intermittently throughout the video of interest.
Analyse sémantique latente probabilisteL’analyse sémantique latente probabiliste (de l'anglais, Probabilistic latent semantic analysis : PLSA), aussi appelée indexation sémantique latente probabiliste (PLSI), est une méthode de traitement automatique des langues inspirée de l'analyse sémantique latente. Elle améliore cette dernière en incluant un modèle statistique particulier. La PLSA possède des applications dans le filtrage et la recherche d'information, le traitement des langues naturelles, l'apprentissage automatique et les domaines associés.