Partitionnement de donnéesvignette|upright=1.2|Exemple de clustering hiérarchique. Le partitionnement de données (ou data clustering en anglais) est une méthode en analyse des données. Elle vise à diviser un ensemble de données en différents « paquets » homogènes, en ce sens que les données de chaque sous-ensemble partagent des caractéristiques communes, qui correspondent le plus souvent à des critères de proximité (similarité informatique) que l'on définit en introduisant des mesures et classes de distance entre objets.
Méthode de Newtonvignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.
Méthodes de points intérieursvignette|Visualisation de la méthode des points intérieur : le chemin reste à l’intérieur du polyèdre. vignette|Visualisation de la méthode du simplexe : le chemin suit les arêtes du polyèdre vignette|Visualisation de la méthode par ellipsoïde : l’ellipse se rétrécit Les méthodes de points intérieurs forment une classe d’algorithmes qui permettent de résoudre des problèmes d’optimisation mathématique.
Single-linkage clusteringIn statistics, single-linkage clustering is one of several methods of hierarchical clustering. It is based on grouping clusters in bottom-up fashion (agglomerative clustering), at each step combining two clusters that contain the closest pair of elements not yet belonging to the same cluster as each other. This method tends to produce long thin clusters in which nearby elements of the same cluster have small distances, but elements at opposite ends of a cluster may be much farther from each other than two elements of other clusters.
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
Regroupement hiérarchiqueDans le domaine de l'analyse et de la classification automatique de données, le regroupement hiérarchique est un partitionnement de données ou clustering, au moyen de diverses méthodes, dites « ascendantes » et « descendantes ». Les méthodes dites « descendantes » partent d’une solution générale vers une autre plus spécifique. Les méthodes de cette catégorie démarrent avec une seule classe contenant la totalité puis se divisent à chaque étape selon un critère jusqu’à l’obtention d’un ensemble de classes différentes.
K-moyennesLe partitionnement en k-moyennes (ou k-means en anglais) est une méthode de partitionnement de données et un problème d'optimisation combinatoire. Étant donnés des points et un entier k, le problème est de diviser les points en k groupes, souvent appelés clusters, de façon à minimiser une certaine fonction. On considère la distance d'un point à la moyenne des points de son cluster ; la fonction à minimiser est la somme des carrés de ces distances.
Critère d'information bayésienLe critère d'information bayésien (en anglais bayesian information criterion, en abrégé BIC), aussi appelé critère d'information de Schwarz, est un critère d'information dérivé du critère d'information d'Akaike proposé par en 1978. À la différence du critère d'information d'Akaike, la pénalité dépend de la taille de l'échantillon et pas seulement du nombre de paramètres. Il s'écrit : avec la vraisemblance du modèle estimée, le nombre d'observations dans l'échantillon et le nombre de paramètres libres du modèle.
Méthode du gradient conjuguévignette|Illustration de la méthode du gradient conjugué. En analyse numérique, la méthode du gradient conjugué est un algorithme pour résoudre des systèmes d'équations linéaires dont la matrice est symétrique définie positive. Cette méthode, imaginée en 1950 simultanément par Cornelius Lanczos, Eduard Stiefel et Magnus Hestenes, est une méthode itérative qui converge en un nombre fini d'itérations (au plus égal à la dimension du système linéaire).
Deviance information criterionThe deviance information criterion (DIC) is a hierarchical modeling generalization of the Akaike information criterion (AIC). It is particularly useful in Bayesian model selection problems where the posterior distributions of the models have been obtained by Markov chain Monte Carlo (MCMC) simulation. DIC is an asymptotic approximation as the sample size becomes large, like AIC. It is only valid when the posterior distribution is approximately multivariate normal.