Ascending chain condition on principal idealsIn abstract algebra, the ascending chain condition can be applied to the posets of principal left, principal right, or principal two-sided ideals of a ring, partially ordered by inclusion. The ascending chain condition on principal ideals (abbreviated to ACCP) is satisfied if there is no infinite strictly ascending chain of principal ideals of the given type (left/right/two-sided) in the ring, or said another way, every ascending chain is eventually constant.
Near-ringIn mathematics, a near-ring (also near ring or nearring) is an algebraic structure similar to a ring but satisfying fewer axioms. Near-rings arise naturally from functions on groups. A set N together with two binary operations + (called addition) and ⋅ (called multiplication) is called a (right) near-ring if: N is a group (not necessarily abelian) under addition; multiplication is associative (so N is a semigroup under multiplication); and multiplication on the right distributes over addition: for any x, y, z in N, it holds that (x + y)⋅z = (x⋅z) + (y⋅z).
Semiprime ringIn ring theory, a branch of mathematics, semiprime ideals and semiprime rings are generalizations of prime ideals and prime rings. In commutative algebra, semiprime ideals are also called radical ideals and semiprime rings are the same as reduced rings. For example, in the ring of integers, the semiprime ideals are the zero ideal, along with those ideals of the form where n is a square-free integer. So, is a semiprime ideal of the integers (because 30 = 2 × 3 × 5, with no repeated prime factors), but is not (because 12 = 22 × 3, with a repeated prime factor).
Corps gaucheEn mathématiques, un corps gauche ou anneau à division (parfois simplement appelé corps, voir plus bas) est une des structures algébriques utilisées en algèbre générale. C'est un ensemble muni de deux opérations binaires rendant possibles certains types d'additions, de soustractions, de multiplications et de divisions. Plus précisément, un corps gauche est un anneau dans lequel l'ensemble des éléments non nuls est un groupe pour la multiplication. Un corps gauche dont la multiplication est commutative est appelé « corps commutatif ».
Théorie algébrique des nombresEn mathématiques, la théorie algébrique des nombres est la branche de la théorie des nombres utilisant des outils issus de l'algèbre. Son origine est l'étude des nombres entiers et particulièrement les équations diophantiennes. Pour en résoudre certaines, il est utile de considérer d'autres entiers, dits algébriques. Un exemple est donné par le théorème des deux carrés de Fermat utilisant les entiers de Gauss. Ces ensembles sont équipés de deux lois — une addition et une multiplication — qui vérifient les mêmes propriétés élémentaires que les entiers relatifs : on parle d'anneaux.
Richard BrauerRichard Dagobert Brauer ( à Berlin – à Belmont (Massachusetts)) est un mathématicien allemand et américain. Ses directeurs de thèse furent Issai Schur et Erhard Schmidt. Il a surtout travaillé en algèbre, mais a aussi apporté des contributions importantes en théorie des nombres. Il fut le fondateur de la . Son frère aîné Alfred Brauer est aussi un mathématicien. Son épouse Ilse Karger, née en 1901, est décédée en 1980. Caractère d'une représentation d'un groupe fini Groupe de Brauer Catégorie:Naissance en f
Théorème fondamental de l'arithmétiqueEn mathématiques, et en particulier en arithmétique élémentaire, le théorème fondamental de l'arithmétique ou théorème de décomposition en produit de facteurs premiers s'énonce ainsi : tout entier strictement positif peut être écrit comme un produit de nombres premiers d'une unique façon, à l'ordre près des facteurs. Par exemple, nous pouvons écrire que : = 2 × 3 × 17 ou encore = 2 × 3 × 5 et il n'existe aucune autre factorisation de ou sous forme de produits de nombres premiers, excepté par réarrangement des facteurs ci-dessus.
Anneau de BézoutEn algèbre commutative, un anneau quasi-bézoutien est un anneau où la propriété de Bézout est vérifiée ; plus formellement, c'est un anneau dans lequel tout idéal de type fini est principal. Un anneau de Bézout, ou anneau bézoutien, est un anneau quasi-bézoutien intègre. Un idéal de type fini est un idéal engendré par un nombre fini d'éléments. Un idéal engendré par un élément a est dit idéal principal et se note aA. Un idéal engendré par deux éléments a et b se note aA + bA, il est constitué des éléments de A pouvant s'écrire sous la forme au + bv avec u et v éléments de A.
Anneau semi-simpleEn mathématiques et plus particulièrement en algèbre, un anneau A est dit semi-simple si A, considéré comme A-module, est semi-simple, c'est-à-dire somme directe de A-modules qui n'admettent pas d'autres sous-modules que {0} et lui-même. À isomorphisme près, ce sont les anneaux produits d'anneaux de matrices carrées sur des corps, commutatifs ou non. Cette notion est présente dans de nombreuses branches mathématiques : on peut citer l'algèbre linéaire, l'arithmétique, la théorie des représentations d'un groupe fini celle des groupes de Lie ou celle des algèbres de Lie.
Corps globalEn mathématiques, un corps global est un corps d'un des types suivants : un corps de nombres, c'est-à-dire une extension finie de Q un corps de fonctions d'une courbe algébrique sur un corps fini, c'est-à-dire une extension finie du corps k(t) des fractions rationnelles à une variable à coefficients dans un corps fini k (de façon équivalente, c'est un corps de type fini et de degré de transcendance 1 sur un corps fini). Emil Artin et George Whaples ont donné une caractérisation axiomatique de ces corps via la théorie des valuations.