Nil idealIn mathematics, more specifically ring theory, a left, right or two-sided ideal of a ring is said to be a nil ideal if each of its elements is nilpotent. The nilradical of a commutative ring is an example of a nil ideal; in fact, it is the ideal of the ring maximal with respect to the property of being nil. Unfortunately the set of nil elements does not always form an ideal for noncommutative rings. Nil ideals are still associated with interesting open questions, especially the unsolved Köthe conjecture.
Quaternionvignette|Plaque commémorative de la naissance des quaternions sur le pont de Broom (Dublin). En mathématiques, un quaternion est un nombre dans un sens généralisé. Les quaternions englobent les nombres réels et complexes dans un système de nombres plus vastes où la multiplication n'est cette fois-ci plus une loi commutative. Les quaternions furent introduits par le mathématicien irlandais William Rowan Hamilton en 1843. Ils trouvent aujourd'hui des applications en mathématiques, en physique, en informatique et en sciences de l'ingénieur.
Polynôme minimal d'un endomorphismeLe polynôme minimal est un outil qui permet d'utiliser en algèbre linéaire des résultats de la théorie des polynômes. Il est en effet possible d'appliquer un polynôme à un endomorphisme, comme expliqué dans l'article intérêt du concept de polynôme d'endomorphisme. Il est défini comme le polynôme unitaire (son coefficient de plus haut degré est égal à 1) de plus petit degré qui annule un endomorphisme, c'est-à-dire une application linéaire d'un espace vectoriel dans lui-même.
Spectre d'anneauEn mathématiques, le spectre premier d'un anneau commutatif unitaire A désigne l'ensemble des idéaux premiers de A. Cet ensemble est muni d'une topologie (de Zariski) et d'un faisceau d'anneaux commutatifs unitaires qui en font un espace topologique annelé en anneaux locaux. Cet espace est alors appelé un schéma affine et il sert d'espace de base pour la construction des schémas en géométrie algébrique. Le spectre d'un anneau commutatif A est l'ensemble de ses idéaux premiers. On le note Spec A.
MorphismeEn mathématiques, le morphisme est la relative similitude d'objets mathématiques considérés du point de vue de ce qu'ils partagent comme entités ou par leurs relations. En algèbre générale, un morphisme (ou homomorphisme) est une application entre deux structures algébriques de même espèce, c'est-à-dire des ensembles munis de lois de composition interne ou externe (par exemple deux groupes ou deux espaces vectoriels), qui respectent certaines propriétés en passant d'une structure à l'autre.
Algèbre de quaternionsEn mathématiques, une algèbre de quaternions sur un corps commutatif K est une K-algèbre de dimension 4 qui généralise à la fois le corps des quaternions de Hamilton et l'algèbre des matrices carrées d'ordre 2. Pour être plus précis, ce sont les algèbres centrales simples sur K de degré 2. Dans cet article, on note K un corps commutatif (de caractéristique quelconque). On appelle algèbre de quaternions sur K toute algèbre (unitaire et associative) A de dimension 4 sur K qui est simple (c'est-à-dire que A et {0} sont les seuls idéaux bilatères) et dont le centre est K.
Anneau de Dedekindthumb|Richard Dedekind définit et établit les bases de la théorie des anneaux portant maintenant son nom. En mathématiques, un anneau de Dedekind est un anneau commutatif disposant de propriétés particulières (voir aussi anneau de Dedekind non commutatif). Sa formalisation initiale a pour objectif la description d'un ensemble d'entiers algébriques, ce concept est aussi utilisé en géométrie algébrique. Les anneaux de Dedekind doivent leur origine à la théorie algébrique des nombres.
Forme quadratique binaireEn mathématiques, une forme quadratique binaire est une forme quadratique — c'est-à-dire un polynôme homogène de degré 2 — en deux variables : Les propriétés d'une telle forme dépendent de façon essentielle de la nature des coefficients a, b, c, qui peuvent être par exemple des nombres réels ou rationnels ou, ce qui rend l'étude plus délicate, entiers. Fermat considérait déjà des formes quadratiques binaires entières, en particulier pour son théorème des deux carrés.
Ε-quadratic formIn mathematics, specifically the theory of quadratic forms, an ε-quadratic form is a generalization of quadratic forms to skew-symmetric settings and to *-rings; ε = ±1, accordingly for symmetric or skew-symmetric. They are also called -quadratic forms, particularly in the context of surgery theory. There is the related notion of ε-symmetric forms, which generalizes symmetric forms, skew-symmetric forms (= symplectic forms), Hermitian forms, and skew-Hermitian forms.
Isotropic quadratic formIn mathematics, a quadratic form over a field F is said to be isotropic if there is a non-zero vector on which the form evaluates to zero. Otherwise the quadratic form is anisotropic. More explicitly, if q is a quadratic form on a vector space V over F, then a non-zero vector v in V is said to be isotropic if q(v) = 0. A quadratic form is isotropic if and only if there exists a non-zero isotropic vector (or null vector) for that quadratic form. Suppose that (V, q) is quadratic space and W is a subspace of V.