Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Vuethumb|250px|Ommatidies de krill antarctique, composant un œil primitif adapté à une vision sous-marine. thumb|250px|Yeux de triops, primitifs et non mobiles. thumb|250px|Yeux multiples d'une araignée sauteuse (famille des Salticidae, composée d'araignées chassant à l'affut, mode de chasse nécessitant une très bonne vision). thumb|250px|Œil de la libellule Platycnemis pennipes, offrant un champ de vision très large, adapté à un comportement de prédation.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
PerceptionLa perception est l'activité par laquelle un sujet fait l'expérience d'objets ou de propriétés présents dans son environnement. Cette activité repose habituellement sur des informations fournies par ses sens. Chez l'espèce humaine, la perception est aussi liée aux mécanismes de cognition. Le mot « perception » désigne : soit le processus de recueil et de traitement de l'information sensorielle ou sensible (en psychologie cognitive par exemple) ; soit la prise de conscience qui en résulte (en philosophie de la perception notamment).
Psychologie de la formeLa psychologie de la forme, théorie de la Gestalt ou gestaltisme (de l'allemand, Gestaltpsychologie) est une théorie psychologique et philosophique proposée au début du selon laquelle les processus de la perception et de la représentation mentale traitent les phénomènes comme des formes globales plutôt que comme l'addition ou la juxtaposition d'éléments simples. Elle se base sur trois postulats : Les activités psychiques ont lieu dans un système complexe et ouvert, dans lequel chaque système partiel est déterminé par sa relation à ses méta-systèmes.
Attentionthumb|250px|Jeune fille se concentrant sur une tâche manuelle ; le regard, la respiration, la position du corps et en particulier des mains et le contrôle neuro musculaire sont mobilisés de concert pour assurer la précision du mouvement L'attention est la faculté de l'esprit de se consacrer à un objet : d'utiliser ses capacités à l'observation, l'étude, le jugement d'une chose quelle qu'elle soit, ou encore à la pratique d'une action.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Cortex visuelLe occupe le lobe occipital du cerveau et est chargé de traiter les informations visuelles. Le cortex visuel couvre le lobe occipital, sur les faces latérales et internes, et empiète sur le lobe pariétal et le lobe temporal. L'étude du cortex visuel en neurosciences a permis de le découper en une multitude de sous-régions fonctionnelles (V1, V2, V3, V4, MT) qui traitent chacune ou collectivement des multiples propriétés des informations provenant des voies visuelles (formes, couleurs, mouvements).