Mécanique des milieux continusLa mécanique des milieux continus est le domaine de la mécanique qui s’intéresse à la déformation des solides et à l’ des fluides. Ce dernier point faisant l’objet de l’article Mécanique des fluides, cet article traite donc essentiellement de la mécanique des solides déformables. Le tableau suivant indique les divers domaines couverts par la mécanique des milieux continus. Si l'on regarde la matière de « très près » (échelle nanoscopique), la matière est granulaire, faite de molécules.
Résistance vasculaireComme tout liquide s'écoulant dans un tube, le sang propulsé par le cœur dans le système circulatoire est soumis à une résistance à l'écoulement. Cette résistance vasculaire est l'un des deux facteurs qui influencent la pression et le débit du courant sanguin, l'autre étant la compliance des vaisseaux sanguins. Rappelons-nous la loi de Poiseuille : la différence de pression est égale au débit multiplié par la résistance à l'écoulement.
Mécanique des solides déformablesLa est la branche de la mécanique des milieux continus qui étudie le comportement mécanique des matériaux solides, en particulier leurs mouvements et leurs déformations sous l'action de forces, de changements de température, de changements de phase ou d'autres actions externes ou internes. Une application typique de la mécanique des solides déformables consiste à déterminer à partir d'un certaine géométrie solide d'origine et des chargements qui lui sont appliqués, si le corps répond à certaines exigences de résistance et de rigidité.
Strain energy density functionA strain energy density function or stored energy density function is a scalar-valued function that relates the strain energy density of a material to the deformation gradient. Equivalently, where is the (two-point) deformation gradient tensor, is the right Cauchy–Green deformation tensor, is the left Cauchy–Green deformation tensor, and is the rotation tensor from the polar decomposition of . For an anisotropic material, the strain energy density function depends implicitly on reference vectors or tensors (such as the initial orientation of fibers in a composite) that characterize internal material texture.
AnisotropieLanisotropie (contraire d'isotropie) est la propriété d'être dépendant de la direction. Quelque chose d'anisotrope pourra présenter différentes caractéristiques selon son orientation. Un exemple simple est celui des lunettes de soleil polarisantes qui ne laissent pas passer la lumière selon la direction dans laquelle on les regarde. Ceci est aussi visible sur certains écrans d'ordinateurs plats qui n'affichent pas les mêmes couleurs : on dit que leur rayonnement est anisotrope.
Fibre naturellethumb|Cordelette en chanvre. Les fibres naturelles sont d'origine animale ou végétale. Les plus utilisées sont les fibres de coton, lin et chanvre, ou encore de sisal, jute, kénaf ou coco. Les fibres de chanvre étaient particulièrement prisées pour les cordages et voilures des bateaux de la marine marchande et de guerre du fait de leur grande souplesse et résistance en environnement agressif. Les fibres et filasses de chanvre sont aujourd'hui utilisées par exemple pour l'étanchéité dans le chauffage sanitaire.
Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Loi bêta primeEn théorie des probabilités et en statistique, la loi bêta prime (également connue sous les noms loi bêta II ou loi bêta du second type) est une loi de probabilité continue définie dont le support est et dépendant de deux paramètres de forme. Si une variable aléatoire X suit une loi bêta prime, on notera . Sa densité de probabilité est donnée par : où B est la fonction bêta. Cette loi est une loi de Pearson de type VI. Le mode d'une variable aléatoire de loi bêta prime est .
Mécanique des fluidesLa mécanique des fluides est un domaine de la physique consacré à l’étude du comportement des fluides (liquides, gaz et plasmas) et des forces internes associées. C’est une branche de la mécanique des milieux continus qui modélise la matière à l’aide de particules assez petites pour relever de l’analyse mathématique, mais assez grandes par rapport aux molécules pour être décrites par des fonctions continues. Elle comprend deux sous-domaines : la statique des fluides, qui est l’étude des fluides au repos, et la dynamique des fluides, qui est l’étude des fluides en mouvement.
Microscope électroniquethumb|Microscope électronique construit par Ernst Ruska en 1933.thumb|Collection de microscopes électroniques anciens (National Museum of Health & Medicine). Un microscope électronique (ME) est un type de microscope qui utilise un faisceau d'électrons pour illuminer un échantillon et en créer une très agrandie. Il est inventé en 1931 par des ingénieurs allemands. Les microscopes électroniques ont un pouvoir de résolution supérieur aux microscopes optiques qui utilisent des rayonnements électromagnétiques visibles.