Pic de HubbertLe pic de Hubbert ou courbe de Hubbert, est une courbe en cloche proposée dans les années 1940 par le géophysicien Marion King Hubbert, qui modélise la production d'une matière première donnée, en particulier celle du pétrole. Cette courbe devint célèbre quand Hubbert en fit la présentation officielle à l'American Petroleum Institute en 1956, avec les deux points importants suivants : cette courbe en cloche passe par un maximum, indiquant que la production décline forcément par la suite ; elle est relativement symétrique par rapport à ce maximum.
Spectroscopie rotationnelle-vibrationnelleLa spectroscopie rotationnelle-vibrationnelle est une branche de la spectroscopie moléculaire à laquelle est observée le couplage rovibrationnel, ou l'excitation à la fois des phénomènes de vibration et de rotation au sein d'un objet chimique (une molécule, par exemple). Il est à distinguer du couplage rovibronique qui implique une modification simultanée des états électroniques, vibrationnels et rotationnels. Ce phénomène physique est exploité pour la caractérisation spectroscopique.
Pic pétrolierthumb|upright=1.6|Courbes cumulées de production de pétrole (graphique de 2005). À cette époque, le pic pétrolier était attendu pour l'année 2006, année où le pétrole conventionnel a effectivement atteint son pic. Toutefois, l'essor du pétrole de schiste américain dans les années 2010 a repoussé les perspectives du pic pétrolier mondial vers 2025.
Spectroscopie RMNvignette|redresse|Spectromètre RMN avec passeur automatique d'échantillons utilisé en chimie organique pour la détermination des structures chimiques. vignette|redresse|Animation présentant le principe de la Résonance Magnétique Nucléaire (RMN). La spectroscopie RMN est une technique qui exploite les propriétés magnétiques de certains noyaux atomiques. Elle est basée sur le phénomène de résonance magnétique nucléaire (RMN), utilisé également en sous le nom d’.
Local-density approximationLocal-density approximations (LDA) are a class of approximations to the exchange–correlation (XC) energy functional in density functional theory (DFT) that depend solely upon the value of the electronic density at each point in space (and not, for example, derivatives of the density or the Kohn–Sham orbitals). Many approaches can yield local approximations to the XC energy. However, overwhelmingly successful local approximations are those that have been derived from the homogeneous electron gas (HEG) model.
Masse volumiqueLa masse volumique d'une substance, aussi appelée volumique de masse, est une grandeur physique qui caractérise la masse de cette substance par unité de volume. C'est l'inverse du volume massique. La masse volumique est synonyme des expressions désuètes « densité absolue », « densité propre », ou encore « masse spécifique ». Cette grandeur physique est généralement notée par les lettres grecques ρ (rhô) ou μ (mu). Leur usage dépend du domaine de travail. Toutefois, le BIPM recommande d'utiliser la notation ρ.
Densité électroniqueright|thumb|300px|Carte de densité électronique dans le plan [1-10] du diamant. En mécanique quantique, et en particulier en chimie quantique, la densité électronique correspondant à une fonction d'onde N-électronique est la fonction monoélectronique donnée par : Dans le cas où est un déterminant de Slater constitué de N orbitales de spin : La densité électronique à deux électrons est donnée par : Ces quantités sont particulièrement importantes dans le contexte de la théorie de la fonctionnelle de la densité : Les coordonnées x utilisées ici sont les coordonnées spin-spatiales.
Liaison métalliqueredresse=1.75|vignette| Diagramme représentant la distribution des électrons dans les bandes de différents types de matériaux à l'équilibre. De gauche à droite : métal ; semimétal ; semiconducteur (dopé p, intrinsèque, dopé n) ; isolant. L'énergie est représentée par l'axe vertical, tandis que l'épaisseur horizontale des bandes représente la densité d'états.La densité électronique par niveau d'énergie suit la statistique de Fermi-Dirac et est représentée par un dégradé de noir.
Densité d'états électroniquesEn physique du solide et physique de la matière condensée, la densité d'états électroniques, en anglais Density of States ou DOS, quantifie le nombre d'états électroniques susceptibles d’être occupés, et possédant une énergie donnée dans le matériau considéré. Elle est généralement notée par l'une des lettres g, ρ, D, n ou N. Plus précisément, on définit la densité d'états par le fait que est le nombre d'états électroniques disponibles, avec une énergie comprise entre et , par unité de volume du solide ou par maille élémentaire du cristal étudié.
Surface (topology)In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right. However, surfaces can also be defined abstractly, without reference to any ambient space. For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space.