Chirality (physics)A chiral phenomenon is one that is not identical to its (see the article on mathematical chirality). The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry. Helicity (particle physics) The helicity of a particle is positive (“right-handed”) if the direction of its spin is the same as the direction of its motion.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Symmetry in biologySymmetry in biology refers to the symmetry observed in organisms, including plants, animals, fungi, and bacteria. External symmetry can be easily seen by just looking at an organism. For example, the face of a human being has a plane of symmetry down its centre, or a pine cone displays a clear symmetrical spiral pattern. Internal features can also show symmetry, for example the tubes in the human body (responsible for transporting gases, nutrients, and waste products) which are cylindrical and have several planes of symmetry.
PyramideEn géométrie, une pyramide (du grec ancien ) à n côtés est un polyèdre à n + 1 faces, formé en reliant une base polygonale de n côtés à son sommet ou sommet opposé à la base (également appelé apex), par n faces triangulaires (n ≥ 3). Lorsque cela n'est pas précisé, la base est supposée carrée. Pour une pyramide triangulaire chaque face peut servir de base, avec le sommet opposé pour apex. Le tétraèdre régulier, un des solides de Platon, est une pyramide triangulaire.
Symétrie TNommée ainsi dans le cadre de la physique des particules, on dit qu'une théorie possède la symétrie T, ou encore symétrie par renversement du temps, si elle est invariante sous la transformation d'inversion du temps c'est-à-dire qui effectue le changement suivant sur la coordonnée de temps Alors que la symétrie T semble naturelle en mécanique quantique, elle est néanmoins violée dans le cadre du modèle standard car la symétrie CP est violée alors que par la symétrie CPT obtenue par application simultanée du
Tétraèdrethumb|Un tétraèdre. thumb|Paul Sérusier, Tétraèdres, vers 1910. En géométrie, les tétraèdres (du grec tétra : quatre) sont des polyèdres de la famille des pyramides, composés de triangulaires, et . Le 3-simplexe est la représentation abstraite du tétraèdre ; dans ce modèle, les arêtes s'identifient aux 6 sous-ensembles à 2 éléments de l'ensemble des quatre sommets, et les faces aux 4 sous-ensembles à 3 éléments. Chaque sommet d'un tétraèdre est relié à tous les autres par une arête, et de même chaque face est reliée à toutes les autres par une arête.
Foundations of geometryFoundations of geometry is the study of geometries as axiomatic systems. There are several sets of axioms which give rise to Euclidean geometry or to non-Euclidean geometries. These are fundamental to the study and of historical importance, but there are a great many modern geometries that are not Euclidean which can be studied from this viewpoint. The term axiomatic geometry can be applied to any geometry that is developed from an axiom system, but is often used to mean Euclidean geometry studied from this point of view.
Géométrie projectiveEn mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d'horizon. Elle étudie les propriétés inchangées des figures par projection centrale. Le mathématicien et architecte Girard Desargues fonde la géométrie projective dans son Brouillon project d’une Atteinte aux evenemens des rencontres du cone avec un plan publié en 1639, où il l'utilise pour une théorie unifiée des coniques.
Réflexion glisséeEn géométrie euclidienne, une réflexion glissée du plan euclidien est une isométrie affine de ce plan, constituée de la composée d'une réflexion par rapport à une droite et d'une translation dans la direction de cette droite. Cette composition est ici commutative. Plus généralement, dans un espace euclidien quelconque, une réflexion glissée est la composée d'une réflexion par rapport à un hyperplan et d'une translation parallèlement à cet hyperplan. Réflexion (mathématiques) Symétrie (transformation géomét
Géométrie moléculaire tétraédriqueEn chimie, la géométrie moléculaire tétraédrique est la géométrie des molécules où un atome central, noté A, est lié à quatre atomes, notés X, aux sommets d'un tétraèdre régulier (ou presque régulier). Ces composés appartiennent à la classe AX4E0 selon la théorie VSEPR. Les angles de liaison sont de ≈ 109,47° (double de l'angle dit « magique ») lorsque tous les substituants sont les mêmes, comme dans le cas du méthane (CH4).