Variété différentielleEn mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s'agit de variétés, « espaces courbes » localement modelés sur l'espace euclidien de dimension n, sur lesquelles il est possible de généraliser une bonne part des opérations du calcul différentiel et intégral. Une variété différentielle se définit donc d'abord par la donnée d'une variété topologique, espace topologique localement homéomorphe à l'espace R.
Taux d'intérêtLe taux d'intérêt d'un prêt ou d'un emprunt fixe la rémunération du capital prêté (exprimée en pourcentage du montant prêté) versée par l'emprunteur au prêteur. Le taux et les modalités de versement de cette rémunération sont fixés lors de la conclusion du contrat de prêt. Ce pourcentage tient compte de la durée du prêt, de la nature des risques encourus et des garanties offertes par le prêteur. Les taux d'intérêt sont utilisés dans de multiples domaines, des instruments financiers jusqu'aux produits d'épargne (compte d'épargne), en passant par les obligations.
Intérêt (finance)En finance, l'intérêt est la rémunération d'un prêt, sous forme généralement d'un versement périodique de l'emprunteur au prêteur. Pour le prêteur, c'est le prix de sa renonciation temporaire à la liquidité. Pour l'emprunteur, c'est un coût correspondant à une utilisation anticipée. Une épargne rémunérée par un intérêt est assimilable à un prêt fait à un emprunteur, comme une banque ou l'organisme bénéficiaire de cette épargne. Taux d'intérêt L'intérêt est proportionnel au capital et croît avec le temps couru.
Option sur tauxUne option sur taux (Interest Rate Option en anglais) donne le droit à l'acheteur d'emprunter un montant déterminé (Cap) ou d'en prêter un (Floor) à un taux d'intérêt fixé (taux d'intérêt d'exercice) pour une durée spécifique. Un Cap est une option de type option d'achat sur un taux d'intérêt taillé sur mesure. L'acheteur d'un Cap détermine au préalable le taux qu'il souhaite payer au maximum pour son emprunt; le vendeur s'engage à payer à l'acheteur du Cap la différence de taux s'il dépasse le niveau convenu.
Swap de taux d'intérêtUn swap de taux d'intérêt (en anglais : Interest Rate Swaps ou IRS) est un produit dérivé financier, dont l'appellation officielle en français est « contrat d'échange de taux d'intérêt ». Voir les articles généraux : swap et produit dérivé. Le marché des swaps standards (plain vanilla en anglais) contre taux IBOR constitue le deuxième plus important marché des taux d'intérêt à moyen et long terme, derrière celui des emprunts d'État et futures sur emprunts d'État.
Taux sans risqueUn taux sans risque dans une devise et pour une période particulière est le taux d'intérêt constaté sur le marché des emprunts d'État de pays considérés solvables et d'organisations intergouvernementales pour la même devise et la même période. On désigne donc ainsi l'absence théorique de risque de crédit, et non une quelconque absence de risque de taux, qui lui demeure bien présent. Il est toutefois à noter qu'un État peut faire faillite. Comme pour tous les taux d'intérêt, il convient de préciser quelles bases et conventions de calcul s'appliquent.
Taux d'intérêt réelEn économie et en sciences actuarielles, le taux d'intérêt réel est le taux d'intérêt nominal auquel on doit effectuer une correction afin qu'il tienne compte du taux d'inflation et de la prime de risque. Avec un taux d'intérêt nominal et un taux d'inflation , tous deux mesurés sur une même période, l'équation du taux d'intérêt réel, noté , sur cette période est la suivante: Il est possible, de façon intuitive, d'approximer le taux d'intérêt réel de la façon suivante : En fait, cette équation approximative peut être déterminée ex post grâce à l'équation de Fisher : Où est le taux d'intérêt réel, le taux d'intérêt nominal, et le taux d'inflation.
Intérêts composésUn capital est placé à intérêts composés lorsque les intérêts de chaque période sont incorporés au capital pour l'augmenter progressivement et porter intérêts à leur tour. C'est une notion antagoniste à celle d'intérêts simples, où les intérêts ne sont pas réinvestis pour devenir à leur tour porteurs d'intérêts. Pour calculer des intérêts composés annuellement, il faut utiliser une suite géométrique, dont la formule est : où est la valeur finale, la valeur initiale, le taux d'intérêt sur une période, et le nombre de périodes (d'années, semestres, trimestres, etc.
Short-rate modelA short-rate model, in the context of interest rate derivatives, is a mathematical model that describes the future evolution of interest rates by describing the future evolution of the short rate, usually written . Under a short rate model, the stochastic state variable is taken to be the instantaneous spot rate. The short rate, , then, is the (continuously compounded, annualized) interest rate at which an entity can borrow money for an infinitesimally short period of time from time .
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).