Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper addresses the fundamental problem of computing stable medial representations of 3D shapes. We propose a spatially adaptive classification of geometric features that yields a robust algorithm for generating medial representations at different levels of abstraction. The recently introduced continuous scale axis transform serves as the mathematical foundation of our algorithm. We show how geometric and topological properties of the continuous setting carry over to discrete shape representations. Our method combines scaling operations of medial balls for geometric simplification with filtrations of the medial axis and provably good conversion steps to and from union of balls, to enable efficient processing of a wide variety shape representations including polygon meshes, 3D images, implicit surfaces, and point clouds. We demonstrate the robustness and versatility of our algorithm with an extensive validation on hundreds of shapes including complex geometries consisting of millions of triangles.
Christophe Moser, Paul Delrot, Jorge Andres Madrid Wolff, Damien Claude-Marie Loterie, Antoine Vincent Boniface, Roberto Arturo Emma