Forme (géométrie)En géométrie classique, la forme permet d’identifier ou de distinguer des figures selon qu’elles peuvent ou non être obtenues les unes à partir des autres par des transformations géométriques qui préservent les angles en multipliant toutes les longueurs par un même coefficient d’agrandissement. Au sens commun, la forme d’une figure est en général décrite par la donnée combinatoire d’un nombre fini de points et de segments ou d’autres courbes délimitant des surfaces, des comparaisons de longueurs ou d’angles, d’éventuels angles droits et éventuellement du sens de courbure.
Modélisation tridimensionnelleLa modélisation tridimensionnelle est l'étape en infographie tridimensionnelle qui consiste à créer, dans un logiciel de modélisation 3D, un objet en trois dimensions, par ajout, soustraction et modifications de ses constituants. La révolution consiste à faire tourner un profil 2D autour d'un axe 3D : on obtient ainsi un volume de révolution. C'est la technique majoritairement utilisée dans le jeu vidéo, et le cinéma d'animation. La modélisation polygonale induit une marge d'erreur de proportions et de dimensions le plus souvent invisible à l'œil nu.
Géométrie euclidienneLa géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.
3D scanning3D scanner is the process of analyzing a real-world object or environment to collect three dimensional data of its shape and possibly its appearance (e.g. color). The collected data can then be used to construct digital 3D models. A 3D scanner can be based on many different technologies, each with its own limitations, advantages and costs. Many limitations in the kind of objects that can be digitised are still present. For example, optical technology may encounter many difficulties with dark, shiny, reflective or transparent objects.
Primitive (modélisation)vignette|Primitives communes en 2D (triangle, rectangle, ellipse, droite, polygone) Dans le vocabulaire de la 3D, les primitives sont des formes géométriques de base, pouvant être créées sur demande par le logiciel, mathématiquement parfaites car régies par des formules mathématiques (par opposition aux objets dits « maillés »). Les formes pouvant être générées sont les suivantes (liste non exhaustive, différente selon les logiciels) : Sphère Cube Cylindre Plan Pyramide Cône Tore Théière de l'Utah Les primitives existent également en 2D.
Surface implicitevignette|implicit surface torus (R=40, a=15) vignette|implicit surface of genus 2 150px|vignette|implicit non algebraic surface (wineglas) vignette|equipotential surface of 4 point charges 400px|vignette|metamorphoses between two implicit surfaces (torus and a constant distance product surface) 240px|vignette|approximation of three tori (parallel projection) 280px|vignette|PovRay-image (central projection) of an approximation of three tori 400px|vignette|PovRay-Bild: metamorphoses between a sphere and a cons
Face (géométrie)vignette|Un cube : les surfaces en rouge sont les faces du cube. Chaque sommet est entouré par trois faces. En géométrie, les faces d'un polyèdre sont les polygones qui le bordent. Par exemple, un cube possède six faces qui sont des carrés. Le suffixe èdre (dans polyèdre) est dérivé du grec hedra, qui signifie face. Par extension, les faces d'un polytope de dimension n sont tous les polytopes de dimension strictement inférieure à n qui le bordent (et pas seulement ceux de dimension n-1).
Feature (computer vision)In computer vision and , a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions.
Digital image processingDigital image processing is the use of a digital computer to process s through an algorithm. As a subcategory or field of digital signal processing, digital image processing has many advantages over . It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.
Pyramide (traitement d'image)En traitement d'images, la pyramide est une représentation multi-résolution d'une image. Elle permet de modéliser l'image à différentes , depuis l'image initiale jusqu'à une image très grossière. La pyramide d'images est souvent utilisée car elle permet à l'algorithme de traitement d'image de travailler depuis les détails jusqu'au « grossier ». Cet outil est notamment utilisé à des fins de . Les principaux types de construction d'une pyramide d'images sont : Gaussienne Laplacienne Irrégulière Adaptative Il existe deux principaux types de pyramides : passe-bas, et passe-bande.