Quadratic fieldIn algebraic number theory, a quadratic field is an algebraic number field of degree two over , the rational numbers. Every such quadratic field is some where is a (uniquely defined) square-free integer different from and . If , the corresponding quadratic field is called a real quadratic field, and, if , it is called an imaginary quadratic field or a complex quadratic field, corresponding to whether or not it is a subfield of the field of the real numbers.
Équation polynomialeEn mathématiques, une équation polynomiale, ou équation algébrique, est une équation de la forme : où P est un polynôme. Voici un exemple d'équation simple avec une seule inconnue : Usuellement, le terme équation polynomiale désigne une équation avec une seule inconnue (notée ici x) : où l'entier naturel n et les , appelés coefficients de l’équation, sont connus. Les coefficients sont le plus souvent des nombres réels ou complexes, mais ils peuvent prendre leurs valeurs dans n’importe quel anneau.
Hiérarchie polynomialeEn théorie de la complexité, la hiérarchie polynomiale est une hiérarchie de classes de complexité qui étend la notion de classes P, NP, co-NP. La classe PH est l'union de toutes les classes de la hiérarchie polynomiale. Il existe plusieurs définitions équivalentes des classes de la hiérarchie polynomiale. On peut définir la hiérarchie à l'aide des quantificateurs universel () et existentiel ().
Primitive part and contentIn algebra, the content of a nonzero polynomial with integer coefficients (or, more generally, with coefficients in a unique factorization domain) is the greatest common divisor of its coefficients. The primitive part of such a polynomial is the quotient of the polynomial by its content. Thus a polynomial is the product of its primitive part and its content, and this factorization is unique up to the multiplication of the content by a unit of the ring of the coefficients (and the multiplication of the primitive part by the inverse of the unit).
Système d'équations algébriquesEn mathématiques, un système d'équations algébriques est un ensemble d'équations polynomiales f1 = 0..., fh = 0 où les fi sont des polynômes de plusieurs variables (ou indéterminées), x1..., xn, à coefficients pris dans un corps ou un anneau k. Une « solution » est un ensemble de valeurs à substituer aux indéterminées annulant toutes les équations du système. Généralement les solutions peuvent être cherchées dans une extension du corps k comme la clôture algébrique de ce corps (ou la clôture algébrique du corps des fractions de k celui-ci est un anneau).
Polynôme homogèneEn mathématiques, un polynôme homogène, ou forme algébrique, est un polynôme en plusieurs indéterminées dont tous les monômes non nuls sont de même degré total. Par exemple le polynôme x + 2xy + 9xy est homogène de degré 5 car la somme des exposants est 5 pour chacun des monômes ; les polynômes homogènes de degré 2 sont les formes quadratiques. Les polynômes homogènes sont omniprésents en mathématiques et en physique théorique. Soit K un corps commutatif. Un polynôme homogène de degré d en n variables est un polynôme dans K[X, .
Factorization of polynomials over finite fieldsIn mathematics and computer algebra the factorization of a polynomial consists of decomposing it into a product of irreducible factors. This decomposition is theoretically possible and is unique for polynomials with coefficients in any field, but rather strong restrictions on the field of the coefficients are needed to allow the computation of the factorization by means of an algorithm. In practice, algorithms have been designed only for polynomials with coefficients in a finite field, in the field of rationals or in a finitely generated field extension of one of them.
Grade universitaireUn grade universitaire est un degré dans la hiérarchie des études supérieures. Il est attesté par un diplôme délivré par les universités et autres institutions d’études supérieures. Les grades sont conférés aux titulaires de diplômes de l'enseignement supérieur délivrés par les universités et les établissements habilités. Les grades peuvent être également conférés aux titulaires de certains diplômes propres à des établissements. À ces grades peuvent être associés un certain nombre de droits et de privilèges, pouvant varier suivant les disciplines et les finalités.
Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Fonction rationnelleEn mathématiques, une fonction rationnelle est une fonction définie par une fraction rationnelle, c'est-à-dire une dont le numérateur et le dénominateur sont des polynômes. En pratique, l'ensemble de définition est généralement (ensemble des réels) ou (ensemble des complexes). Si P et Q sont deux fonctions polynomiales et si Q n'est pas une fonction nulle, la fonction est définie pour tout x tel que Q(x) ≠ 0 par Une fonction qui n'est pas rationnelle est dite irrationnelle.