Internal and external anglesIn geometry, an angle of a polygon is formed by two adjacent sides. For a simple (non-self-intersecting) polygon, regardless of whether it is convex or non-convex, this angle is called an (or interior angle) if a point within the angle is in the interior of the polygon. A polygon has exactly one internal angle per vertex. If every internal angle of a simple polygon is less than a straight angle (π radians or 180°), then the polygon is called convex.
Figure isotoxaleEn géométrie, un polytope (un polygone, un polyèdre ou un pavage, par exemple) est isotoxal si son groupe de symétrie agit transitivement sur ses côtés. Informellement, cela veut dire qu'il y a un seul type de côté dans cet objet : pour deux côtés de l'objet, il y a une translation, une rotation et/ou une réflexion qui transforme un côté en l'autre, tout en laissant la région occupée par l'objet inchangée. Le terme isotoxal est dérivé du Grec τοξον qui veut dire arc.
Fáry's theoremIn the mathematical field of graph theory, Fáry's theorem states that any simple, planar graph can be drawn without crossings so that its edges are straight line segments. That is, the ability to draw graph edges as curves instead of as straight line segments does not allow a larger class of graphs to be drawn. The theorem is named after István Fáry, although it was proved independently by , , and . One way of proving Fáry's theorem is to use mathematical induction.
Design combinatoireLa théorie du design combinatoire est une partie des mathématiques combinatoires ; elle traite de l'existence, de la construction et des propriétés de systèmes d'ensembles finis dont les arrangements satisfont certains concepts d'équilibre et/ou de symétrie. Ces concepts sont assez imprécis pour qu'une large gamme d'objets puisse être considérée comme relevant de ces notions. Parfois, cela peut concerner la taille des intersections comme dans les plans en blocs, d'autres fois on est intéressé par la disposition des entrées dans un tableau comme dans les grilles de sudoku.
Décomposition arborescenteEn théorie des graphes, une décomposition arborescente ou décomposition en arbre (en anglais : tree-decomposition) consiste en une décomposition d'un graphe en séparateurs (sous-ensembles de sommets dont la suppression rend le graphe non connexe), connectés dans un arbre. Cette décomposition permet de définir une autre notion importante, la largeur arborescente ou largeur d'arbre (treewidth). Cette méthode a été proposée par Paul Seymour et Neil Robertson dans le cadre de leur théorie sur les mineurs d'un graphe.
Triangulation d'un polygoneEn géométrie algorithmique, la triangulation d'un polygone consiste à décomposer ce polygone en un ensemble (fini) de triangles. Une triangulation d'un polygone P est une partition de P en un ensemble de triangles qui ne se recouvrent pas, et dont l'union est P. Dans le cas le plus restrictif, on impose que les sommets des triangles ne soient que les sommets de P. Dans un cadre plus permissif, on peut rajouter des sommets à l'intérieur de P ou sur la frontière pour servir de sommets aux triangles.
Compas (géométrie)vignette|redresse|Dessin d'un cercle avec un compas. vignette|redresse|Compas muni d'un stylo à pointe tubulaire. Un compas est un instrument de géométrie qui sert à tracer des cercles ou des arcs de cercle, mais aussi à comparer, reporter ou mesurer des distances. Il est constitué de deux branches jointes par une articulation. Les compas sont, ou ont été, utilisés en mathématiques, pour le dessin technique, en géographie pour le tracé et l'utilisation des cartes, etc.