Publication

Initialization Mechanism in Kohonen Neural Network Implemented in CMOS Technology

Rafal Tomasz Dlugosz
2008
Article de conférence
Résumé

An initialization mechanism is presented for Kohonen neural network implemented in CMOS technology. Proper selection of initial values of neurons’ weights has a large influence on speed of the learning algorithm and finally on the quantization error of the network, which for different initial parameters can vary even by several orders of magnitude. Experiments with the software model of designed network show that results can be additionally improved when conscience mechanism is used during the learning phase. This mechanism additionally decreases number of dead neurons, which minimizes the quantization error. The initialization mechanism together with experimental Kohonen neural network with four neurons and 3 inputs have been designed in CMOS 0.18 μm technology.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.