Jointure (informatique)En informatique et plus particulièrement dans les bases de données relationnelles, la jointure ou appariement est l'opération permettant d’associer plusieurs tables ou vues de la base par le biais d’un lien logique de données entre les différentes tables ou vues, le lien étant vérifié par le biais d'un prédicat. Le résultat de l'opération est une nouvelle table. En SQL, une jointure est définie dans la clause FROM, en indiquant le mot clef JOIN pour chaque nouvelle table à joindre à l'une des précédentes et en spécifiant comment, dans un prédicat de jointure introduit par le mot clef ON.
Lissage (mathématiques)vignette|Exemple de lissage d'une courbe. La courbe bleue joint des données brutes de la température moyenne quotidienne à la station météo de Paris-Montsouris (France) du 1960/01/01 au 1960/02/29. La courbe orange est obtenue avec un lissage exponentiel simple et un facteur alpha = 0.1. Le lissage est une technique qui consiste à réduire les irrégularités et singularités d'une courbe en mathématiques. Cette technique est utilisée en traitement du signal pour atténuer ce qui peut être considéré comme une perturbation ou un bruit de mesure.
Sort-merge joinThe sort-merge join (also known as merge join) is a join algorithm and is used in the implementation of a relational database management system. The basic problem of a join algorithm is to find, for each distinct value of the join attribute, the set of tuples in each relation which display that value. The key idea of the sort-merge algorithm is to first sort the relations by the join attribute, so that interleaved linear scans will encounter these sets at the same time.
Optimisation de requêteL'optimisation de requête est une opération dans laquelle plusieurs plans d'exécution d'une requête SQL sont examinés pour en sélectionner le meilleur. L'estimation de leurs coûts dépend du temps d'exécution et du nombre de ressources utilisées pour y parvenir, elle se mesure en entrées-sorties. Typiquement les ressources coûteuses sont l'utilisation du processeur, la taille et la durée des tampons sur le disque dur, et les connexions entre les unités du parallélisme.
Régression localeLa régression locale, ou LOESS, est une méthode de régression non paramétrique fortement connexe qui combine plusieurs modèles de régression multiple au sein d'un méta-modèle qui repose sur la méthode des k plus proches voisins. « LOESS » est, en anglais, l'acronyme de « LOcally Estimated Scatterplot Smoothing ». La régression locale est une alternative possible aux méthodes habituelles de régression, comme la régression par les moindres carrés linéaire ou non linéaire, dans les cas où ces dernières s'avèrent mal adaptées.
Algèbre relationnelleL'algèbre relationnelle est un langage de requêtes dans des bases de données relationnelles. L'algèbre relationnelle a été inventée en 1970 par Edgar Frank Codd, le directeur de recherche du centre IBM de San José. Il s'agit de la théorie sous-jacente aux langages de requête des SGBD, comme SQL. Le théorème de Codd dit que l'algèbre relationnelle est équivalente au calcul relationnel (logique du premier ordre sans symbole de fonction). Elle est aussi équivalente à Datalog¬ (Datalog avec la négation) non récursif.
Corrélation (statistiques)En probabilités et en statistique, la corrélation entre plusieurs variables aléatoires ou statistiques est une notion de liaison qui contredit leur indépendance. Cette corrélation est très souvent réduite à la corrélation linéaire entre variables quantitatives, c’est-à-dire l’ajustement d’une variable par rapport à l’autre par une relation affine obtenue par régression linéaire. Pour cela, on calcule un coefficient de corrélation linéaire, quotient de leur covariance par le produit de leurs écarts types.
Edge-preserving smoothingEdge-preserving smoothing or edge-preserving filtering is an technique that smooths away noise or textures while retaining sharp edges. Examples are the median, bilateral, guided, anisotropic diffusion, and Kuwahara filters. In many applications, e.g., medical or satellite imaging, the edges are key features and thus must be preserved sharp and undistorted in smoothing/denoising. Edge-preserving filters are designed to automatically limit the smoothing at “edges” in images measured, e.g., by high gradient magnitudes.
Intraclass correlationIn statistics, the intraclass correlation, or the intraclass correlation coefficient (ICC), is a descriptive statistic that can be used when quantitative measurements are made on units that are organized into groups. It describes how strongly units in the same group resemble each other. While it is viewed as a type of correlation, unlike most other correlation measures, it operates on data structured as groups rather than data structured as paired observations.
Cum hoc ergo propter hocCum hoc ergo propter hoc (latin signifiant avec ceci, donc à cause de ceci) est un sophisme qui consiste à prétendre que si deux événements sont corrélés, alors, il y a un lien de cause à effet entre les deux. La confusion entre corrélation et causalité est appelée effet cigogne en zététique (en référence à la corrélation trompeuse entre le nombre de nids de cigognes et celui des naissances humaines) ; en science et particulièrement en statistique cette erreur est rappelée par la phrase « la corrélation n'implique pas la causalité », en latin : cum hoc sed non propter hoc (avec ceci, cependant pas à cause de ceci).