Ligne de niveauSoit f une fonction à valeurs réelles, une ligne de niveau est un ensemble { (x1,...,xn) | f(x1,...,xn) = c } ; c étant une constante. C'est en fait le sous-ensemble de l'ensemble de définition sur lequel f prend une valeur donnée. Théorème : le gradient de f est perpendiculaire en tout point à la ligne de niveau de f en ce point. Il s'agit d'un résultat important. Pour mieux le comprendre, imaginons que deux randonneurs sont à la même position sur une montagne.
Équations d'EulerEn mécanique des fluides, les équations d'Euler sont des équations aux dérivées partielles non linéaires qui décrivent l'écoulement des fluides (liquide ou gaz) dans l’approximation des milieux continus. Ces écoulements sont adiabatiques, sans échange de quantité de mouvement par viscosité ni d'énergie par conduction thermique. L'histoire de ces équations remonte à Leonhard Euler qui les a établies pour des écoulements incompressibles (1757).
Erreur d'approximationvignette|Approximation de la fonction exponentielle par une fonction affine. En analyse numérique, une branche des mathématiques, l'erreur d'approximation de certaines données est la différence entre une valeur exacte et une certaine valeur approchée ou approximation de celle-ci. Une erreur d'approximation peut se produire lorsque la mesure des données n'est pas précise (en raison des instruments) ; ou lors de l'emploi de valeurs approchées au lieu des valeurs exactes (par exemple, 3,14 au lieu de π).
Fluide (matière)Un fluide est un milieu matériel parfaitement déformable. On regroupe sous cette appellation les liquides, les gaz et les plasmas. Gaz et plasmas sont très compressibles, tandis que les liquides le sont très peu (à peine plus que les solides). La transition de l'état liquide à l'état gazeux (ou réciproquement) est en général de premier ordre, c'est-à-dire brusque, discontinue.
Équation de continuitévignette|mécanique des fluides En mécanique des fluides, le principe de conservation de la masse peut être décrit par l'équation de continuité sous plusieurs formes différentes : locale conservative (dérivée en temps normale), locale non conservative (la dérivée en temps suit la particule dans son mouvement), ou intégrale. Suivant les problèmes posés, c'est l'une ou l'autre de ces équations qui pourra être retenue, toutes étant équivalentes.
Équation d'Einsteinvignette|Équation sur un mur à Leyde. L’'équation d'Einstein ou équation de champ d'Einstein' (en anglais, Einstein field equation ou EFE), publiée par Albert Einstein, pour la première fois le , est l'équation aux dérivées partielles principale de la relativité générale. C'est une équation dynamique qui décrit comment la matière et l'énergie modifient la géométrie de l'espace-temps. Cette courbure de la géométrie autour d'une source de matière est alors interprétée comme le champ gravitationnel de cette source.
Conservation de la masseLa conservation de la masse (ou de Lavoisier) est une loi fondamentale de la chimie et de la physique. Elle indique non seulement qu'au cours de toute expérience, y compris si elle implique une transformation chimique, la masse se conserve, mais aussi que le nombre d'éléments de chaque espèce chimique se conserve (cette loi ne s'applique pas à l'échelle nucléaire : voir défaut de masse). Comme toute loi de conservation elle s'exprime par une équation de conservation.
Material derivativeIn continuum mechanics, the material derivative describes the time rate of change of some physical quantity (like heat or momentum) of a material element that is subjected to a space-and-time-dependent macroscopic velocity field. The material derivative can serve as a link between Eulerian and Lagrangian descriptions of continuum deformation. For example, in fluid dynamics, the velocity field is the flow velocity, and the quantity of interest might be the temperature of the fluid.
Erreur d'arrondiUne erreur d'arrondi est la différence entre la valeur approchée calculée d'un nombre et sa valeur mathématique exacte. Des erreurs d'arrondi naissent généralement lorsque des nombres exacts sont représentés dans un système incapable de les exprimer exactement. Les erreurs d'arrondi se propagent au cours des calculs avec des valeurs approchées ce qui peut augmenter l'erreur du résultat final. Dans le système décimal des erreurs d'arrondi sont engendrées, lorsqu'avec une troncature, un grand nombre (peut-être une infinité) de décimales ne sont pas prises en considération.
Fluide non newtonienUn fluide non newtonien est un fluide qui ne suit pas la loi de viscosité de Newton, c'est-à-dire une viscosité constante indépendante de la contrainte. Dans les fluides non newtoniens, la viscosité peut changer lorsqu'elle est soumise à une force pour devenir plus liquide ou plus solide. Le ketchup, par exemple, devient plus coulant lorsqu'il est secoué et se comporte donc de manière non newtonienne.