Assemblage de photosL'assemblage de photos est un procédé consistant à combiner plusieurs se recouvrant, dans le but de produire un panorama ou une image de haute définition. thumb|right|upright=2|alt=Exemple de détection de zones de recouvrement pour l'assemblage d'un panorama : une série de six images sont assemblées en panorama, une ligne rouge délimitant les zones de recouvrement.|Exemple de détection de zones de recouvrement pour l'assemblage d'un panorama. Photographie panoramique Panographie Catégorie:Vision artificiel
Homography (computer vision)In the field of computer vision, any two images of the same planar surface in space are related by a homography (assuming a pinhole camera model). This has many practical applications, such as , , or camera motion—rotation and translation—between two images. Once camera resectioning has been done from an estimated homography matrix, this information may be used for navigation, or to insert models of 3D objects into an image or video, so that they are rendered with the correct perspective and appear to have been part of the original scene (see Augmented reality).
Pose (computer vision)In the fields of computing and computer vision, pose (or spatial pose) represents the position and orientation of an object, usually in three dimensions. Poses are often stored internally as transformation matrices. The term “pose” is largely synonymous with the term “transform”, but a transform may often include scale, whereas pose does not. In computer vision, the pose of an object is often estimated from camera input by the process of pose estimation.
Loi géométriqueEn théorie des probabilités et en statistique, la loi géométrique désigne, selon la convention choisie, l'une des deux lois de probabilité suivantes : la loi du nombre X d'épreuves de Bernoulli indépendantes de probabilité de succès p ∈ ]0,1[ (ou q = 1 – p d'échec) nécessaire pour obtenir le premier succès. X est la variable aléatoire donnant le rang du premier succès. Le support de la loi est alors {1, 2, 3, ...}. La loi du nombre Y = X – 1 d'échecs avant le premier succès. Le support de la loi est alors {0, 1, 2, 3, .
Conjugate priorIn Bayesian probability theory, if the posterior distribution is in the same probability distribution family as the prior probability distribution , the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood function . A conjugate prior is an algebraic convenience, giving a closed-form expression for the posterior; otherwise, numerical integration may be necessary. Further, conjugate priors may give intuition by more transparently showing how a likelihood function updates a prior distribution.
Loi bêtaDans la théorie des probabilités et en statistiques, la loi bêta est une famille de lois de probabilités continues, définies sur , paramétrée par deux paramètres de forme, typiquement notés (alpha) et (bêta). C'est un cas spécial de la loi de Dirichlet, avec seulement deux paramètres. Admettant une grande variété de formes, elle permet de modéliser de nombreuses distributions à support fini. Elle est par exemple utilisée dans la méthode PERT. Fixons les deux paramètres de forme α, β > 0.
Jeffreys priorIn Bayesian probability, the Jeffreys prior, named after Sir Harold Jeffreys, is a non-informative prior distribution for a parameter space; its density function is proportional to the square root of the determinant of the Fisher information matrix: It has the key feature that it is invariant under a change of coordinates for the parameter vector . That is, the relative probability assigned to a volume of a probability space using a Jeffreys prior will be the same regardless of the parameterization used to define the Jeffreys prior.
Application projectiveEn mathématiques, une application projective est une application entre deux espaces projectifs qui préserve la structure projective, c'est-à-dire qui envoie les droites, plans, espaces... en des droites, plans, espaces. ➪ Fichier:France homographie (1).gif Une application projective bijective s'appelle une homographie. Rappelons que la définition moderne d'un espace projectif est d'être un ensemble dont les points sont les droites vectorielles d'un -espace vectoriel .
Feature (computer vision)In computer vision and , a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions.
Loi exponentielleUne loi exponentielle modélise la durée de vie d'un phénomène sans mémoire, ou sans vieillissement, ou sans usure : la probabilité que le phénomène dure au moins s + t heures (ou n'importe quelle autre unité de temps) sachant qu'il a déjà duré t heures sera la même que la probabilité de durer s heures à partir de sa mise en fonction initiale. En d'autres termes, le fait que le phénomène ait duré pendant t heures ne change rien à son espérance de vie à partir du temps t.