Ensemble canoniqueEn physique statistique, l’ensemble (ou situation) canonique est un ensemble statistique introduit par le physicien américain Josiah Willard Gibbs. Il correspond au cas d'un système physique de volume donné et contenant un nombre fixe de particules, en interaction avec un autre système, appelé réservoir ou thermostat, beaucoup plus grand que le système considéré et avec lequel il peut échanger de l'énergie mais pas de matière. Le thermostat se comporte comme un réservoir supposé infini d'énergie, la réunion des deux systèmes étant considérée comme isolée.
Ensemble statistiqueEn physique statistique, un ensemble statistique est une abstraction qui consiste à considérer une collection de copies virtuelles (ou répliques) d'un système physique dans l'ensemble des états accessibles où il est susceptible de se trouver, compte tenu des contraintes extérieures qui lui sont imposées, telles le volume, le nombre de particules, l'énergie et la température. Cette notion, introduite par le physicien américain Josiah Willard Gibbs en 1902, est un concept central de la physique statistique.
Convolutional codeIn telecommunication, a convolutional code is a type of error-correcting code that generates parity symbols via the sliding application of a boolean polynomial function to a data stream. The sliding application represents the 'convolution' of the encoder over the data, which gives rise to the term 'convolutional coding'. The sliding nature of the convolutional codes facilitates trellis decoding using a time-invariant trellis. Time invariant trellis decoding allows convolutional codes to be maximum-likelihood soft-decision decoded with reasonable complexity.
Ensemble microcanoniqueEn physique statistique, l'ensemble microcanonique est un ensemble statistique constitué des répliques fictives d'un système réel pouvant être considéré comme isolé, par suite dont l'énergie (E), le volume (V) et le nombre de particules (N) sont fixés. Cet ensemble statistique a une importance particulière, car c'est à partir de celui-ci que le postulat de la physique statistique est défini. Cet ensemble permet aussi de déterminer les ensembles canonique et grand-canonique, à l'aide d'échanges d'énergie et/ou de particules avec un réservoir.
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Ensemble grand-canoniqueEn physique statistique, l’ensemble grand-canonique est un ensemble statistique qui correspond au cas d'un système qui peut échanger de l'énergie avec un réservoir externe d'énergie (ou thermostat), ainsi que des particules. Il est donc en équilibre thermodynamique thermique et chimique avec le réservoir d'énergie et de particules. Plus précisément, il s'agit de l'ensemble des « copies virtuelles » (ou répliques fictives) du même système en équilibre avec le réservoir d'énergie et de particules.
Binary erasure channelIn coding theory and information theory, a binary erasure channel (BEC) is a communications channel model. A transmitter sends a bit (a zero or a one), and the receiver either receives the bit correctly, or with some probability receives a message that the bit was not received ("erased") . A binary erasure channel with erasure probability is a channel with binary input, ternary output, and probability of erasure . That is, let be the transmitted random variable with alphabet .
Canal binaire symétriqueAlice veut transmettre un message à Bob. Un canal binaire symétrique est un canal discret où Alice transmet une suite d’éléments de l'ensemble et où la probabilité d'erreur dans la transmission d'un symbole est de , pour 0 et pour 1 (d'où la symétrie). Ce canal est sans mémoire, c'est-à-dire qu'aucune archive des messages n'est conservée. En communication, un problème classique est d'envoyer de l'information d'une source à une destination via un canal de communication, en présence de bruit.
Capacité d'un canalLa capacité d'un canal, en génie électrique, en informatique et en théorie de l'information, est la limite supérieure étroite du débit auquel l'information peut être transmise de manière fiable sur un canal de communication. Suivant les termes du théorème de codage du canal bruyant, la capacité d'un canal donné est le débit d'information le plus élevé (en unités d'information par unité de temps) qui peut être atteint avec une probabilité d'erreur arbitrairement faible. La théorie de l'information, développée par Claude E.
Codes de parité à faible densitéDans la théorie de l'information, un contrôle de parité de faible densité LDPC est un code linéaire correcteur d'erreur, permettant la transmission d'information sur un canal de transmission bruité. LDPC est construit en utilisant un graphe biparti clairsemé. Les codes LDPC ont une capacité approchant la limite théorique. À l'aide de techniques itératives de propagation d'information sur la donnée transmise et à décoder, les codes LDPC peuvent être décodés en un temps proportionnel à leur longueur de bloc.