Groupe spinorielEn mathématiques, le groupe spinoriel de degré n, noté Spin(n), est un revêtement double particulier du groupe spécial orthogonal réel SO(n,R). C’est-à-dire qu’il existe une suite exacte de groupes de Lie On peut aussi définir les groupes spinoriels d'une forme quadratique non dégénérée sur un corps commutatif. Pour n > 2, Spin(n) est simplement connexe et coïncide avec le revêtement universel de SO(n,R). En tant que groupe de Lie, Spin(n) partage sa dimension n(n–1)/2 et son algèbre de Lie avec le groupe spécial orthogonal.
Moto électriqueElectric motorcycles and scooters are plug-in electric vehicles with two or three wheels. Power is supplied by a rechargeable battery that drives one or more electric motors. Electric scooters are distinguished from motorcycles by having a step-through frame, instead of being straddled. Electric bicycles are similar vehicles, distinguished by retaining the ability to be propelled by the rider pedaling in addition to battery propulsion. Electric scooters with the rider standing are known as e-scooters.
Champ magnétiqueEn physique, dans le domaine de l'électromagnétisme, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace et permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents.
Moment magnétiqueEn physique, le moment magnétique est une grandeur vectorielle qui permet de caractériser l'intensité d'une source magnétique. Cette source peut être un courant électrique, ou bien un objet aimanté. L'aimantation est la distribution spatiale du moment magnétique. Le moment magnétique d'un corps se manifeste par la tendance qu'a ce corps à s'aligner dans le sens d'un champ magnétique, c'est par exemple le cas de l'aiguille d'une boussole : le moment que subit l'objet est égal au produit vectoriel de son moment magnétique par le champ magnétique dans lequel il est placé.
Histoire de la théorie des cordesCet article résume l'histoire de la théorie des cordes. La théorie des cordes est une théorie de la physique moderne qui tente d'unifier la mécanique quantique (physique aux petites échelles) et la théorie de la relativité générale (nécessaire pour décrire la gravitation de manière relativiste). La principale particularité de la théorie des cordes est que son ambition ne s'arrête pas à cette réconciliation, mais qu'elle prétend réussir à unifier les quatre interactions élémentaires connues, on parle de théorie du tout ou de théorie de grande unification.
Structure spinorielleEn géométrie différentielle, il est possible de définir sur certaines variétés riemanniennes la notion de structure spinorielle (qui se décline en structures Spin ou Spinc), étendant ainsi les considérations algébriques sur le groupe spinoriel et les spineurs. En termes imagés, il s'agit de trouver, dans le cadre des « espaces courbes », une géométrie « cachée » à l’œuvre derrière les concepts géométriques ordinaires. On peut aussi y voir une généralisation de la notion d'orientabilité et de changement d'orientation à une forme d'« orientabilité d'ordre supérieur ».
D-braneEn théorie des cordes, une D-brane est une brane sur laquelle sont fixées les extrémités des cordes ouvertes qui sont à l'origine de la matière qu'elle contient. Le D de D-brane, vient de Dirichlet, car le fait que les bouts de la corde ne peuvent sortir de la brane s'appelle la condition de Dirichlet. Selon ce modèle, les propriétés d'une corde (mode vibratoire, taille ; particule engendrée) sont uniquement caractérisées par ses extrémités et les bouts d'une corde ne peuvent sortir de la D-brane sur lesquels ils se trouvent.
Dipôle magnétiquevignette|Dipôle magnétique de la Terre Un dipôle magnétique est l'équivalent pour le champ magnétique de ce qu'est un dipôle électrostatique pour le champ électrique. Il est entièrement caractérisé par le vecteur moment magnétique (ou moment dipolaire magnétique), l'équivalent pour le magnétisme de ce qu'est le moment dipolaire pour l'électrostatique. La représentation matérielle la plus simple d'un dipôle magnétique est une boucle de courant, c'est-à-dire un courant électrique circulaire.
Spin representationIn mathematics, the spin representations are particular projective representations of the orthogonal or special orthogonal groups in arbitrary dimension and signature (i.e., including indefinite orthogonal groups). More precisely, they are two equivalent representations of the spin groups, which are double covers of the special orthogonal groups. They are usually studied over the real or complex numbers, but they can be defined over other fields. Elements of a spin representation are called spinors.
Résonance magnétique nucléairevignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.