Minimal Supersymmetric Standard ModelThe Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the [minimum] number of new particle states and new interactions consistent with "Reality". Supersymmetry pairs bosons with fermions, so every Standard Model particle has a superpartner yet undiscovered. If discovered, such superparticles could be candidates for dark matter, and could provide evidence for grand unification or the viability of string theory.
SupersymétrieLa supersymétrie (abrégée en SuSy) est une symétrie supposée de la physique des particules qui postule une relation profonde entre les particules de spin demi-entier (les fermions) qui constituent la matière et les particules de spin entier (les bosons) véhiculant les interactions. Dans le cadre de la SuSy, chaque fermion est associé à un « superpartenaire » de spin entier, alors que chaque boson est associé à un « superpartenaire » de spin demi-entier.
SuperpartenaireEn physique des particules, le superpartenaire est une particule virtuelle appariée par la supersymétrie. À chaque particule est associée un superpartenaire. Les propriétés du superpartenaire sont tout à fait semblables à la particule qui lui est associée, excepté son spin : celui du superpartenaire diffère de son associé d'une demi-unité. Autrement dit, chaque particule de spin 1/2 est associée à un superpartenaire de spin 0 ; chaque particule de spin 1 est associée à une particule de spin 1/2.
JauginoEn physique des particules, un jaugino (graphie anglaise gaugino) est le superpartenaire hypothétique d'un boson de jauge, prévu par la théorie de jauge combiné avec la supersymétrie. Ce sont des fermions. Dans l'extension supersymétrique minimale du modèle standard, les jauginos sont : le gluino est le superpartenaire du gluon, et par conséquent porte une charge de couleur ; le wino est le superpartenaire du boson W ; le xino est le superpartenaire du boson X ; le yino est le superpartenaire du boson Y ; le bino est le superpartenaire du boson de jauge correspondant à l'hypercharge faible.
Boson de GoldstoneLe boson de Goldstone, parfois appelé boson de Nambu-Goldstone, est un type de particule dont l’existence est impliquée par le phénomène de brisure spontanée de symétrie. D’abord prédit par Yoichiro Nambu puis théorisé par Jeffrey Goldstone, il fait aujourd’hui partie intégrante de la théorie quantique des champs. Il est de spin et masse nuls, bien qu’il puisse acquérir une masse dans certains cas en devenant ainsi un . La nécessité d'un boson de Goldstone dans le modèle standard vient du fait que les bosons de jauge étaient alors supposés ne pas avoir de masse.
Condition aux limites de RobinEn mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855-1897), qui a travaillé dans le domaine de la thermodynamique. Elle est également appelée condition aux limites de Fourier. Imposée à une équation différentielle ordinaire ou à une équation aux dérivées partielles, il s'agit d'une relation linéaire entre les valeurs de la fonction et les valeurs de la dérivée de la fonction sur le bord du domaine.
Condition aux limites de DirichletEn mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Problème aux limitesEn analyse, un problème aux limites est constitué d'une équation différentielle (ou plus généralement aux dérivées partielles) dont on recherche une solution prenant de plus des valeurs imposées en des limites du domaine de résolution. Contrairement au problème analogue dit de Cauchy, où une ou plusieurs conditions en un même endroit sont imposées (typiquement la valeur de la solution et de ses dérivées successives en un point), auquel le théorème de Cauchy-Lipschitz apporte une réponse générale, les problèmes aux limites sont souvent des problèmes difficiles, et dont la résolution peut à chaque fois conduire à des considérations différentes.
Condition aux limites de NeumannEn mathématiques, une condition aux limites de Neumann (nommée d'après Carl Neumann) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs des dérivées que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Neumann sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Brisure spontanée de symétrieEn physique, le terme brisure spontanée de symétrie (BSS) renvoie au fait que, sous certaines conditions, certaines propriétés de la matière ne semblent pas respecter les équations décrivant le mouvement des particules (on dit qu'elles n'ont pas les mêmes symétries). Cette incohérence n'est qu'apparente et signifie simplement que les équations présentent une approximation à améliorer. Cette notion joue un rôle important en physique des particules et en physique de la matière condensée.