Produit matricielLe produit matriciel désigne la multiplication de matrices, initialement appelé la « composition des tableaux ». Il s'agit de la façon la plus fréquente de multiplier des matrices entre elles. En algèbre linéaire, une matrice A de dimensions m lignes et n colonnes (matrice m×n) représente une application linéaire ƒ d'un espace de dimension n vers un espace de dimension m. Une matrice colonne V de n lignes est une matrice n×1, et représente un vecteur v d'un espace vectoriel de dimension n. Le produit A×V représente ƒ(v).
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Matrice inversibleEn mathématiques et plus particulièrement en algèbre linéaire, une matrice inversible (ou régulière ou encore non singulière) est une matrice carrée A pour laquelle il existe une matrice B de même taille n avec laquelle les produits AB et BA sont égaux à la matrice identité. Dans ce cas la matrice B est unique, appelée matrice inverse de A et notée B = A. Cette définition correspond à celle d’élément inversible pour la multiplication dans l’anneau des matrices carrées associé.
Osvignette|250px|Illustration d'un fémur humain extraite de Henry Gray's Anatomy of the Human Body. vignette|250px|La forme des os traduit l'adaptation évolutive aux fonctions qu'ils remplissent pour l'organisme. vignette|250px|Os de pieds déformés par la lèpre. Un os est un organe des Vertébrés, essentiellement constitué d'un tissu conjonctif solidifié qu'on appelle aussi os. Grâce à leur structure, les os sont à la fois légers, souples et solides ; ceux des oiseaux contiennent de l'air et sont particulièrement légers.
Ingénierie tissulaireL'ingénierie tissulaire ou génie tissulaire (en anglais, tissue engineering) est l'ensemble des techniques faisant appel aux principes et aux méthodes de l'ingénierie, de la culture cellulaire, des sciences de la vie, des sciences des matériaux pour comprendre les relations entre les structures et les fonctions des tissus normaux et pathologiques des mammifères, afin de développer des substituts biologiques pouvant restaurer, maintenir ou améliorer les fonctions des tissus.
Consolidation osseuseLa consolidation osseuse est un processus de reconstruction de l'os à la suite d'une fracture osseuse. Le processus de consolidation comporte 3 phases : Elle débute immédiatement après la fracture avec formation d’un hématome périfracturaire (J0 à J20). Formation du cal mou (fibreux) (J20 à J30) Formation du cal dur (ossification) (J30 à J60) Elle a pour but d’adapter le segment osseux aux contraintes mécaniques (1 à 4 ans).
Matrix ringIn abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication . The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R) (alternative notations: Matn(R) and Rn×n). Some sets of infinite matrices form infinite matrix rings. Any subring of a matrix ring is a matrix ring. Over a rng, one can form matrix rngs. When R is a commutative ring, the matrix ring Mn(R) is an associative algebra over R, and may be called a matrix algebra.
Ultimate tensile strengthUltimate tensile strength (also called UTS, tensile strength, TS, ultimate strength or in notation) is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials the ultimate tensile strength is close to the yield point, whereas in ductile materials the ultimate tensile strength can be higher. The ultimate tensile strength is usually found by performing a tensile test and recording the engineering stress versus strain.
ArthroplastieReplacement arthroplasty (from Greek arthron, joint, limb, articulate, + plassein, to form, mould, forge, feign, make an image of), or joint replacement surgery, is a procedure of orthopedic surgery in which an arthritic or dysfunctional joint surface is replaced with an orthopedic prosthesis. Joint replacement is considered as a treatment when severe joint pain or dysfunction is not alleviated by less-invasive therapies. It is a form of arthroplasty, and is often indicated from various joint diseases, including osteoarthritis and rheumatoid arthritis.
Matrice diagonaleEn algèbre linéaire, une matrice diagonale est une matrice carrée dont les coefficients en dehors de la diagonale principale sont nuls. Les coefficients de la diagonale peuvent être ou ne pas être nuls. Une matrice diagonale est une matrice qui correspond à la représentation d'un endomorphisme diagonalisable dans une base de vecteurs propres. La matrice d'un endomorphisme diagonalisable est semblable à une matrice diagonale. Toute matrice diagonale est symétrique, normale et triangulaire.