Mesure (mathématiques)En mathématiques, une mesure positive (ou simplement mesure quand il n'y a pas de risque de confusion) est une fonction qui associe une grandeur numérique à certains sous-ensembles d'un ensemble donné. Il s'agit d'un important concept en analyse et en théorie des probabilités. Intuitivement, la mesure d'un ensemble ou sous-ensemble est similaire à la notion de taille, ou de cardinal pour les ensembles discrets. Dans ce sens, la mesure est une généralisation des concepts de longueur, aire ou volume dans des espaces de dimension 1, 2 ou 3 respectivement.
Problème des neutrinos solairesLe problème des neutrinos solaires est apparu récemment avec la création de structures permettant la détection des neutrinos, et en particulier Super-Kamiokande dans les années 1990 au Japon. Il provient d'une quantité trop faible de neutrinos détectés par rapport à la valeur théorique. Des notions de physique quantique sont nécessaires pour comprendre ce problème. Les neutrinos et antineutrinos sont des particules élémentaires de masse très faible (elle était souvent supposée nulle au début des recherches), introduits dans la théorie de la physique quantique pour assurer la conservation de l'énergie dans les processus de réaction nucléaire.
Mesure extérieureLa notion de mesure extérieure (ou mesure extérieure au sens de Carathéodory) est un concept, dû au mathématicien Constantin Carathéodory, qui généralise dans un cadre axiomatique une construction utilisée par Henri Lebesgue pour définir la mesure de Lebesgue des parties Lebesgue-mesurables de la droite réelle. Soit un ensemble.
Mesure de BorelIn mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets (and thus on all Borel sets). Some authors require additional restrictions on the measure, as described below. Let be a locally compact Hausdorff space, and let be the smallest σ-algebra that contains the open sets of ; this is known as the σ-algebra of Borel sets. A Borel measure is any measure defined on the σ-algebra of Borel sets.
Tribu (mathématiques)En mathématiques, une tribu ou σ-algèbre (lire sigma-algèbre) ou plus rarement corps de Borel sur un ensemble X est un ensemble non vide de parties de X, stable par passage au complémentaire et par union dénombrable (donc aussi par intersection dénombrable). Les tribus permettent de définir rigoureusement la notion d'ensemble mesurable. Progressivement formalisées pendant le premier tiers du , les tribus constituent le cadre dans lequel s'est développée la théorie de la mesure.
Oscillation des neutrinosvignette|Phénomène périodique L'oscillation du neutrino est un phénomène de la mécanique quantique dans lequel un neutrino créé avec une certaine saveur leptonique (neutrino électronique, muonique ou tauique) peut être mesuré plus tard ayant une saveur différente. La probabilité d'avoir une valeur donnée de cette propriété varie de façon périodique alors que la particule se propage. L'oscillation du neutrino est d'intérêt tant théorique qu'expérimental, puisque l'observation de ce phénomène implique la non-nullité de la masse de la particule, .
Interaction faiblethumb|right|330px|L'interaction faible déclenche la nucléosynthèse dans les étoiles. L'interaction faible (aussi appelée force faible et parfois force nucléaire faible) est l'une des quatre interactions fondamentales de la nature, les trois autres étant les interactions électromagnétique, forte et gravitationnelle. Elle est responsable de la désintégration radioactive de particules subatomiques et est à l'origine de la fusion nucléaire dans les étoiles.
NucléonLe terme nucléon désigne de façon générique les composants du noyau atomique, c'est-à-dire les protons et les neutrons qui sont tous deux des baryons. Le nombre de nucléons par atome est généralement noté « A », et appelé « nombre de masse ». Jusque dans les années 1960, les nucléons étaient considérés comme des particules élémentaires. Il est désormais connu que ce sont des particules composées de quarks et de gluons. Les propriétés de ces particules sont régies en grande partie par l'interaction forte.
Mesure de DiracIn mathematics, a Dirac measure assigns a size to a set based solely on whether it contains a fixed element x or not. It is one way of formalizing the idea of the Dirac delta function, an important tool in physics and other technical fields. A Dirac measure is a measure δx on a set X (with any σ-algebra of subsets of X) defined for a given x ∈ X and any (measurable) set A ⊆ X by where 1A is the indicator function of A. The Dirac measure is a probability measure, and in terms of probability it represents the almost sure outcome x in the sample space X.
G-parityIn particle physics, G-parity is a multiplicative quantum number that results from the generalization of C-parity to multiplets of particles. C-parity applies only to neutral systems; in the pion triplet, only π0 has C-parity. On the other hand, strong interaction does not see electrical charge, so it cannot distinguish amongst π+, π0 and π−. We can generalize the C-parity so it applies to all charge states of a given multiplet: where ηG = ±1 are the eigenvalues of G-parity.