Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Simple random sampleIn statistics, a simple random sample (or SRS) is a subset of individuals (a sample) chosen from a larger set (a population) in which a subset of individuals are chosen randomly, all with the same probability. It is a process of selecting a sample in a random way. In SRS, each subset of k individuals has the same probability of being chosen for the sample as any other subset of k individuals. A simple random sample is an unbiased sampling technique. Simple random sampling is a basic type of sampling and can be a component of other more complex sampling methods.
Interprétations de la probabilitéLe mot probabilité a été utilisé dans une variété de domaines depuis qu'il a été appliqué à l'étude mathématique des jeux de hasard. Est-ce que la probabilité mesure la tendance réelle physique de quelque chose de se produire, ou est-ce qu'elle est une mesure du degré auquel on croit qu'elle se produira, ou faut-il compter sur ces deux éléments ? Pour répondre à ces questions, les mathématiciens interprètent les valeurs de probabilité de la théorie des probabilités.
Empirical probabilityIn probability theory and statistics, the empirical probability, relative frequency, or experimental probability of an event is the ratio of the number of outcomes in which a specified event occurs to the total number of trials, i.e., by means not of a theoretical sample space but of an actual experiment. More generally, empirical probability estimates probabilities from experience and observation. Given an event A in a sample space, the relative frequency of A is the ratio \tfrac m n, m being the number of outcomes in which the event A occurs, and n being the total number of outcomes of the experiment.
Échantillonnage (statistiques)thumb|Exemple d'échantillonnage aléatoire En statistique, l'échantillonnage désigne les méthodes de sélection d'un sous-ensemble d'individus (un échantillon) à l'intérieur d'une population pour estimer les caractéristiques de l'ensemble de la population. Cette méthode présente plusieurs avantages : une étude restreinte sur une partie de la population, un moindre coût, une collecte des données plus rapide que si l'étude avait été réalisé sur l'ensemble de la population, la réalisation de contrôles destructifs Les résultats obtenus constituent un échantillon.
Nombre de sujets nécessairesEn statistique, la détermination du nombre de sujets nécessaires est l'acte de choisir le nombre d'observations ou de répétitions à inclure dans un échantillon statistique. Ce choix est très important pour pouvoir faire de l'inférence sur une population. En pratique, la taille de l'échantillon utilisé dans une étude est déterminée en fonction du coût de la collecte des données et de la nécessité d'avoir une puissance statistique suffisante.
Forme sesquilinéaireEn algèbre, une forme sesquilinéaire sur un espace vectoriel complexe E est une application de E × E dans C, linéaire selon l'une des variables et semi-linéaire par rapport à l'autre variable. Elle possède donc une propriété de « un-et-demi » linéarité (cf. préfixe sesqui, qui signifie "dans un rapport de un et demi"). C'est l'équivalent complexe des formes bilinéaires réelles. Les formes sesquilinéaires les plus étudiées sont les formes hermitiennes qui correspondent aux formes bilinéaires (réelles) symétriques.
Univers (probabilités)vignette|Lancé d'une pièce (pile ou face) En théorie des probabilités, un univers, souvent noté , ou , est l'ensemble de toutes les issues (résultats) pouvant être obtenues au cours d'une expérience aléatoire. À chaque élément de l'univers , c'est-à-dire à chacun des résultats possibles de l'expérience considérée, nous pouvons associer le sous-ensemble constitué de cet élément, appelé événement élémentaire. De manière plus générale, toute partie de l'univers est appelée un événement.
Espace pseudo-euclidienEn mathématiques, et plus particulièrement en géométrie, un espace pseudo-euclidien est une extension du concept d'espace euclidien, c'est-à-dire que c'est un espace vectoriel muni d'une forme bilinéaire (qui définirait la métrique dans le cas d'un espace euclidien), mais cette forme n'est pas définie positive, ni même positive. L'espace de Minkowski est un exemple d'espace pseudo-euclidien. Dans les espaces euclidiens, les notions de métrique et d'orthogonalité sont construites par l'adjonction d'un produit scalaire à un espace vectoriel réel de dimension finie.
Classification en classes multiplesIn machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). While many classification algorithms (notably multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies.