Coloration de graphethumb|Une coloration du graphe de Petersen avec 3 couleurs. En théorie des graphes, la coloration de graphe consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. On cherche souvent à utiliser le nombre minimal de couleurs, appelé nombre chromatique. La coloration fractionnaire consiste à chercher non plus une mais plusieurs couleurs par sommet et en associant des coûts à chacune.
Matching in hypergraphsIn graph theory, a matching in a hypergraph is a set of hyperedges, in which every two hyperedges are disjoint. It is an extension of the notion of matching in a graph. Recall that a hypergraph H is a pair (V, E), where V is a set of vertices and E is a set of subsets of V called hyperedges. Each hyperedge may contain one or more vertices. A matching in H is a subset M of E, such that every two hyperedges e_1 and e_2 in M have an empty intersection (have no vertex in common).
Polynôme chromatiqueEn mathématiques, plus particulièrement en théorie des graphes, le polynôme chromatique d'un graphe est une fonction polynômiale donnant le nombre de colorations distinctes d'un graphe, en fonction du nombre de couleurs autorisées. Il a été introduit d'abord en 1912 pour les graphes planaires, par George David Birkhoff, qui cherchait à démontrer le théorème des quatre couleurs. Ce polynôme a pour racines tous les entiers positifs ou nuls strictement inférieurs au nombre chromatique du graphe et a pour degré l'ordre du graphe.
Coloration des arêtes d'un graphethumb|Coloration des arêtes du graphe de Desargues avec trois couleurs. En théorie des graphes et en algorithmique, une coloration des arêtes d'un graphe consiste à attribuer à chaque arête une couleur, en évitant que deux arêtes ayant une extrémité commune soient de la même couleur. La figure ci-contre est un exemple de coloration d'arêtes correcte. On vérifie en effet qu'aucun sommet n'est commun à deux arêtes de même couleur. On remarquera qu'ici, il n'aurait pas été possible de colorer les arêtes du graphe avec seulement deux couleurs.
Mathématiques discrètesLes mathématiques discrètes, parfois appelées mathématiques finies, sont l'étude des structures mathématiques fondamentalement discrètes, par opposition aux structures continues. Contrairement aux nombres réels, qui ont la propriété de varier "en douceur", les objets étudiés en mathématiques discrètes (tels que les entiers relatifs, les graphes simples et les énoncés en logique) ne varient pas de cette façon, mais ont des valeurs distinctes séparées.
Graphe planaire extérieurvignette|Un graphe planaire extérieur maximal, muni d'une 3-coloration. En mathématiques, et plus particulièrement en théorie des graphes, un graphe non orienté est planaire extérieur (ou, par calque de l'anglais, outer-planar) s'il peut être dessiné dans le plan sans croisements des arêtes, de telle façon que tous les sommets appartiennent à la face extérieure du tracé, autrement dit qu'aucun sommet ne soit entouré par des arêtes.
Graphe bipartiEn théorie des graphes, un graphe est dit biparti si son ensemble de sommets peut être divisé en deux sous-ensembles disjoints et tels que chaque arête ait une extrémité dans et l'autre dans . Un graphe biparti permet notamment de représenter une relation binaire. Il existe plusieurs façons de caractériser un graphe biparti. Par le nombre chromatique Les graphes bipartis sont les graphes dont le nombre chromatique est inférieur ou égal à 2. Par la longueur des cycles Un graphe est biparti si et seulement s'il ne contient pas de cycle impair.
Acyclic coloringIn graph theory, an acyclic coloring is a (proper) vertex coloring in which every 2-chromatic subgraph is acyclic. The acyclic chromatic number A(G) of a graph G is the fewest colors needed in any acyclic coloring of G. Acyclic coloring is often associated with graphs embedded on non-plane surfaces. A(G) ≤ 2 if and only if G is acyclic. Bounds on A(G) in terms of Δ(G), the maximum degree of G, include the following: A(G) ≤ 4 if Δ(G) = 3. A(G) ≤ 5 if Δ(G) = 4. A(G) ≤ 7 if Δ(G) = 5. A(G) ≤ 12 if Δ(G) = 6.
Point-finite collectionIn mathematics, a collection or family of subsets of a topological space is said to be point-finite if every point of lies in only finitely many members of A metacompact space is a topological space in which every open cover admits a point-finite open refinement. Every locally finite collection of subsets of a topological space is also point-finite. A topological space in which every open cover admits a locally finite open refinement is called a paracompact space. Every paracompact space is therefore metacompact.
Structure d'incidencevignette| Exemples de structures d'incidence: Exemple 1: Points et droites du plan euclidien Exemple 2: Points et cercles Exemple 3: Structure définie par une matrice d'incidence. En mathématiques, une structure d'incidence est toute composition de deux types d'objets dans le plan euclidien : des points ou l'équivalent de points et des droites ou l'équivalent de droites et d'une seule relation possible entre ces types, les autres propriétés étant ignorées et la structure pouvant ainsi se représenter par une matrice.