Homotopy categoryIn mathematics, the homotopy category is a built from the category of topological spaces which in a sense identifies two spaces that have the same shape. The phrase is in fact used for two different (but related) categories, as discussed below. More generally, instead of starting with the category of topological spaces, one may start with any and define its associated homotopy category, with a construction introduced by Quillen in 1967. In this way, homotopy theory can be applied to many other categories in geometry and algebra.
Règle de sélectionEn mécanique quantique, une règle de sélection est une condition de symétrie permettant d'affirmer qu'un produit scalaire ou un élément de matrice sera nul sans avoir à le calculer explicitement. Les règles sont principalement utilisées pour étudier la possibilité d'effectuer une transition optique entre deux états (absorption ou émission de lumière). En effet, dans le cadre de la règle d'or de Fermi, une transition optique entre un état et un état n'est possible que si l'élément de matrice est différent de .
Bousfield localizationIn , a branch of mathematics, a (left) Bousfield localization of a replaces the model structure with another model structure with the same cofibrations but with more weak equivalences. Bousfield localization is named after Aldridge Bousfield, who first introduced this technique in the context of localization of topological spaces and spectra. Given a class C of morphisms in a M the left Bousfield localization is a new model structure on the same category as before.
Spectroscopie infrarougethumb|Un spectromètre infrarouge. La spectroscopie infrarouge (parfois désignée comme spectroscopie IR) est une classe de spectroscopie qui traite de la région infrarouge du spectre électromagnétique. Elle recouvre une large gamme de techniques, la plus commune étant un type de spectroscopie d'absorption. Comme pour toutes les techniques de spectroscopie, elle peut être employée pour l'identification de composés ou pour déterminer la composition d'un échantillon.
HomotopieEn mathématiques, une homotopie est une déformation continue entre deux applications, notamment entre les chemins à extrémités fixées et en particulier les lacets. Cette notion topologique permet de définir des invariants algébriques utilisés pour classifier les applications continues entre espaces topologiques dans le cadre de la topologie algébrique. L’homotopie induit une relation d'équivalence sur les applications continues, compatible avec la composition, qui mène à la définition de l’équivalence d'homotopie entre espaces topologiques.
Homotopy colimit and limitIn mathematics, especially in algebraic topology, the homotopy limit and colimitpg 52 are variants of the notions of and colimit extended to the homotopy category . The main idea is this: if we have a diagramconsidered as an object in the , (where the homotopy equivalence of diagrams is considered pointwise), then the homotopy limit and colimits then correspond to the and coconewhich are objects in the homotopy category , where is the category with one object and one morphism.
Spectroscopie rotationnelleLa spectroscopie rotationnelle, de rotation ou micro-onde étudie l'absorption et l'émission d'une onde électromagnétique (habituellement dans la région micro-onde du spectre électromagnétique) par des molécules associées aux modifications correspondantes du nombre quantique de rotation de la molécule. L'utilisation de micro-ondes en spectroscopie a été rendue possible en raison principalement du développement de la technologie associée pour le radar durant la Seconde Guerre mondiale.
Spectroscopie rotationnelle-vibrationnelleLa spectroscopie rotationnelle-vibrationnelle est une branche de la spectroscopie moléculaire à laquelle est observée le couplage rovibrationnel, ou l'excitation à la fois des phénomènes de vibration et de rotation au sein d'un objet chimique (une molécule, par exemple). Il est à distinguer du couplage rovibronique qui implique une modification simultanée des états électroniques, vibrationnels et rotationnels. Ce phénomène physique est exploité pour la caractérisation spectroscopique.
Spectre (topologie)En topologie algébrique, une branche des mathématiques, un spectre est un objet représentant une théorie cohomologique généralisée (qui découle du ). Cela signifie que, étant donné une théorie de cohomologie,il existe des espaces tels que l'évaluation de la théorie cohomologique en degré sur un espace équivaut à calculer les classes d'homotopie des morphismes à l'espace , soit encore.Remarquons qu'il existe plusieurs catégories de spectres différentes conduisant à de nombreuses difficultés techniques, mais ils déterminent tous la même , connue sous le nom de catégorie d'homotopie stable.
Théorie des types homotopiquesvignette| Couverture de la Théorie des types homotopiques : Fondations univalentes des mathématiques. Dans la logique mathématique et de l’informatique, la théorie des types homotopiques (en anglais : Homotopy Type Theory HoTT) fait référence à différentes lignes de développement de la théorie des types intuitionnistes, basée sur l’interprétation des types comme des objets auxquels l’intuition de la théorie de l’homotopie s’applique.