Loi logistiqueEn probabilité et en statistiques, la loi logistique est une loi de probabilité absolument continue à support infini utilisé en régression logistique et pour les réseaux de neurones à propagation avant. Son nom de loi logistique est issu du fait que sa fonction de répartition est une fonction logistique. La loi logistique a deux paramètres μ et s > 0 et sa densité est Sa fonction de répartition est Son espérance et sa variance sont données par les formules suivantes : La loi logistique standard est la loi logistique de paramètres 0 et 1.
M-estimateurvignette|M-estimateur En statistique, les M-estimateurs constituent une large classe de statistiques obtenues par la minimisation d'une fonction dépendant des données et des paramètres du modèle. Le processus du calcul d'un M-estimateur est appelé M-estimation. De nombreuses méthodes d'estimation statistiques peuvent être considérées comme des M-estimateurs. Dépendant de la fonction à minimiser lors de la M-estimation, les M-estimateurs peuvent permettre d'obtenir des estimateurs plus robustes que les méthodes plus classiques, comme la méthode des moindres carrés.
Régression de PoissonEn statistique, la régression de Poisson est un modèle linéaire généralisé utilisé pour les données de comptage et les tableaux de contingence. Cette régression suppose que la variable réponse Y suit une loi de Poisson et que le logarithme de son espérance peut être modélisé par une combinaison linéaire de paramètre inconnus. Soit un vecteur de variables indépendantes, et la variable que l'on cherche à prédire. Réaliser une régression de Poisson revient à supposer que suit une loi de Poisson de paramètre , avec et les paramètres de la régression à estimer, et le produit scalaire standard de .
Fonction logistique (Verhulst)En mathématiques, les fonctions logistiques sont les fonctions ayant pour expression où et sont des réels positifs et un réel quelconque. Ce sont les solutions en temps continu du modèle de Verhulst. Pour , leur courbe représentative a la forme d'un S ce qui fait qu'elles sont parfois appelées sigmoïdes. Ces fonctions ont été mises en évidence (vers 1840) par Pierre-François Verhulst, qui cherchait un modèle d'évolution non exponentielle de population comportant un frein et une capacité d'accueil .
Robust regressionIn robust statistics, robust regression seeks to overcome some limitations of traditional regression analysis. A regression analysis models the relationship between one or more independent variables and a dependent variable. Standard types of regression, such as ordinary least squares, have favourable properties if their underlying assumptions are true, but can give misleading results otherwise (i.e. are not robust to assumption violations).
DonnéeUne donnée est ce qui est connu et qui sert de point de départ à un raisonnement ayant pour objet la détermination d'une solution à un problème en relation avec cette donnée. Cela peut être une description élémentaire qui vise à objectiver une réalité, le résultat d'une comparaison entre deux événements du même ordre (mesure) soit en d'autres termes une observation ou une mesure. La donnée brute est dépourvue de tout raisonnement, supposition, constatation, probabilité.
Semiparametric modelIn statistics, a semiparametric model is a statistical model that has parametric and nonparametric components. A statistical model is a parameterized family of distributions: indexed by a parameter . A parametric model is a model in which the indexing parameter is a vector in -dimensional Euclidean space, for some nonnegative integer . Thus, is finite-dimensional, and . With a nonparametric model, the set of possible values of the parameter is a subset of some space , which is not necessarily finite-dimensional.
Maximum spacing estimationIn statistics, maximum spacing estimation (MSE or MSP), or maximum product of spacing estimation (MPS), is a method for estimating the parameters of a univariate statistical model. The method requires maximization of the geometric mean of spacings in the data, which are the differences between the values of the cumulative distribution function at neighbouring data points.
Ordered logitIn statistics, the ordered logit model (also ordered logistic regression or proportional odds model) is an ordinal regression model—that is, a regression model for ordinal dependent variables—first considered by Peter McCullagh. For example, if one question on a survey is to be answered by a choice among "poor", "fair", "good", "very good" and "excellent", and the purpose of the analysis is to see how well that response can be predicted by the responses to other questions, some of which may be quantitative, then ordered logistic regression may be used.
Nombre de sujets nécessairesEn statistique, la détermination du nombre de sujets nécessaires est l'acte de choisir le nombre d'observations ou de répétitions à inclure dans un échantillon statistique. Ce choix est très important pour pouvoir faire de l'inférence sur une population. En pratique, la taille de l'échantillon utilisé dans une étude est déterminée en fonction du coût de la collecte des données et de la nécessité d'avoir une puissance statistique suffisante.