Distance (mathématiques)En mathématiques, une distance est une application qui formalise l'idée intuitive de distance, c'est-à-dire la longueur qui sépare deux points. C'est par l'analyse des principales propriétés de la distance usuelle que Fréchet introduit la notion d'espace métrique, développée ensuite par Hausdorff. Elle introduit un langage géométrique dans de nombreuses questions d'analyse et de théorie des nombres.
Physique au-delà du modèle standardLa physique au-delà du modèle standard se rapporte aux développements théoriques de la physique des particules nécessaires pour expliquer les défaillances du modèle standard, telles que l'origine de la masse, le problème de la violation CP de l'interaction forte, les oscillations des neutrinos, l'asymétrie matière-antimatière, et la nature de la matière noire et de l'énergie noire.
Mass generationIn theoretical physics, a mass generation mechanism is a theory that describes the origin of mass from the most fundamental laws of physics. Physicists have proposed a number of models that advocate different views of the origin of mass. The problem is complicated because the primary role of mass is to mediate gravitational interaction between bodies, and no theory of gravitational interaction reconciles with the currently popular Standard Model of particle physics.
Lumière fatiguéeLa lumière fatiguée ou « fatigue de la lumière » est une hypothèse proposée pour expliquer la loi de Hubble sans faire intervenir une expansion de l'Univers. Cette loi est déduite de l'observation d'un décalage vers le rouge proportionnel à la distance pour les galaxies. Cette idée a été préconisée par Fritz Zwicky en 1929 comme explication alternative possible. L'expression a été inventée d'après Richard Tolman — comme une interprétation alternative de celle de Georges Lemaître et d'Edwin Hubble du décalage vers le rouge cosmique.
Courbe remplissanteEn analyse mathématique, une courbe remplissante (parfois appelée courbe de remplissage) est une courbe dont l' contient le carré unité entier (ou plus généralement un hypercube de dimension n). En raison du fait que le mathématicien Giuseppe Peano (1858–1932) a été le premier à découvrir dans le plan (en dimension 2) une telle courbe, les courbes remplissantes sont parfois appelées courbes de Peano, mais cette dénomination fait maintenant référence à la courbe de Peano qui désigne cet exemple spécifique de courbe remplissante découvert par Peano.
Courbe de PeanoEn mathématiques, la courbe de Peano est le premier exemple découvert de courbe remplissante, c'est-à-dire une courbe plane paramétrée par une fonction continue sur l'intervalle unité [0, 1] et surjective dans le carré [0, 1]×[0, 1] ; autrement dit, la courbe passe par chaque point du carré : elle « remplit l'espace ». En particulier, la courbe de Peano est une fractale : bien que formée d'une simple ligne, elle est de dimension 2. Cette courbe est nommée en l'honneur de Giuseppe Peano qui l'a découverte.
Courbe de HilbertLa courbe de Hilbert est une courbe continue remplissant un carré. Elle a été décrite pour la première fois par le mathématicien allemand David Hilbert en 1891. Comme elle couvre un carré, sa dimension de Hausdorff et sa dimension topologique sont égales à 2. On la considère cependant comme faisant partie des fractales. La longueur euclidienne de H (la courbe approchée continue obtenue à la n-ième itération) est ; elle croit donc exponentiellement avec n.
Torsion d'une courbeEn géométrie différentielle, la torsion d'une courbe tracée dans l'espace mesure la manière dont la courbe se tord pour sortir de son plan osculateur (plan contenant le cercle osculateur). Ainsi, par exemple, une courbe plane a une torsion nulle et une hélice circulaire est de torsion constante. Prises ensemble, la courbure et la torsion d'une courbe de l'espace en définissent la forme comme le fait la courbure pour une courbe plane. La torsion apparait comme coefficient dans les équations différentielles du repère de Frenet.
Quantum field theory in curved spacetimeIn theoretical physics, quantum field theory in curved spacetime (QFTCS) is an extension of quantum field theory from Minkowski spacetime to a general curved spacetime. This theory uses a semi-classical approach; it treats spacetime as a fixed, classical background, while giving a quantum-mechanical description of the matter and energy propagating through that spacetime. A general prediction of this theory is that particles can be created by time-dependent gravitational fields (multigraviton pair production), or by time-independent gravitational fields that contain horizons.