Concept

Torsion d'une courbe

Résumé
En géométrie différentielle, la torsion d'une courbe tracée dans l'espace mesure la manière dont la courbe se tord pour sortir de son plan osculateur (plan contenant le cercle osculateur). Ainsi, par exemple, une courbe plane a une torsion nulle et une hélice circulaire est de torsion constante. Prises ensemble, la courbure et la torsion d'une courbe de l'espace en définissent la forme comme le fait la courbure pour une courbe plane. La torsion apparait comme coefficient dans les équations différentielles du repère de Frenet. Soit C une courbe de l'espace orienté birégulière (les deux dérivées premières sont indépendantes) de classe supérieure ou égale à 3, paramétrisée par la longueur de l'arc : La dérivée de r donne le vecteur unitaire tangent à la courbe et la dérivée seconde de r est alors un vecteur orthogonal au vecteur tangent dont la norme donne la courbure . Le vecteur normal à la courbe et le vecteur binormal sont donnés par : où est le produit vectoriel. Ce vecteur est un vecteur normal au plan osculateur. La dérivée du vecteur est alors un vecteur colinéaire à et il existe une fonction appelée torsion telle que rem: on trouve parfois la définition de la torsion avec un signe opposé. Si la torsion est non nulle, on appelle rayon de torsion l'inverse de la torsion. Si la torsion de la fonction est constamment nulle, la courbe est une courbe plane. Il est possible de calculer la torsion pour tout paramétrage (normal ou admissible) . Si la courbe birégulière de classe supérieure ou égale à 3 est définie par alors et si alors Au point M0, correspondant à la valeur s0 du paramètre, on note la courbure de la courbe en ce point et sa torsion. On se place dans le repère de Frenet pour étudier la courbe. Les coordonnées d'un point de la courbe dans ce repère vérifient les égalités suivantes : où et sont négligeables devant et . La seconde égalité indique comment la courbe tend à s'échapper de son plan osculateur, c'est-à-dire du plan , et le rôle de la torsion dans ce phénomène.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.