Module semi-simplethumb|Camille Jordan, auteur du théorème clé de la théorie En mathématiques et plus précisément en algèbre non commutative, un module sur un anneau est dit semi-simple ou complètement réductible s'il est somme directe de sous-modules simples ou, ce qui est équivalent, si chacun de ses sous-modules possède un supplémentaire. Les propriétés des modules semi-simples sont utilisées en algèbre linéaire pour l'analyse des endomorphismes, dans le cadre des anneaux semi-simples et pour la théorie des représentations des groupes.
Special linear Lie algebraIn mathematics, the special linear Lie algebra of order n (denoted or ) is the Lie algebra of matrices with trace zero and with the Lie bracket . This algebra is well studied and understood, and is often used as a model for the study of other Lie algebras. The Lie group that it generates is the special linear group. The Lie algebra is central to the study of special relativity, general relativity and supersymmetry: its fundamental representation is the so-called spinor representation, while its adjoint representation generates the Lorentz group SO(3,1) of special relativity.
NilpotentEn mathématiques, un élément x d'un anneau unitaire (ou même d'un pseudo-anneau) est dit nilpotent s'il existe un entier naturel n non nul tel que x = 0. Cette définition peut être appliquée en particulier aux matrices carrées. La matrice est nilpotente parce que A = 0. On parle alors de matrice nilpotente et d'endomorphisme nilpotent. Dans l'anneau Z/9Z, la classe de 3 est nilpotente parce que 3 est congru à 0 modulo 9. L'anneau des coquaternions contient un cône de nilpotents.
Groupe nilpotentEn théorie des groupes, les groupes nilpotents forment une certaine classe de groupes contenue dans celle des groupes résolubles et contenant celle des groupes abéliens. Les groupes nilpotents apparaissent dans la théorie de Galois et dans la classification des groupes de Lie ou des groupes algébriques linéaires. Soit G un groupe noté multiplicativement, d'élément neutre e. Si A et B sont deux sous-groupes de G, on note [A,B] le sous-groupe engendré par les commutateurs de la forme [x,y] pour x dans A et y dans B.
Lie group–Lie algebra correspondenceIn mathematics, Lie group–Lie algebra correspondence allows one to correspond a Lie group to a Lie algebra or vice versa, and study the conditions for such a relationship. Lie groups that are isomorphic to each other have Lie algebras that are isomorphic to each other, but the converse is not necessarily true. One obvious counterexample is and (see real coordinate space and the circle group respectively) which are non-isomorphic to each other as Lie groups but their Lie algebras are isomorphic to each other.
Nilpotent idealIn mathematics, more specifically ring theory, an ideal I of a ring R is said to be a nilpotent ideal if there exists a natural number k such that I k = 0. By I k, it is meant the additive subgroup generated by the set of all products of k elements in I. Therefore, I is nilpotent if and only if there is a natural number k such that the product of any k elements of I is 0. The notion of a nilpotent ideal is much stronger than that of a nil ideal in many classes of rings.
Non-associative algebraA non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation.
Central seriesIn mathematics, especially in the fields of group theory and Lie theory, a central series is a kind of normal series of subgroups or Lie subalgebras, expressing the idea that the commutator is nearly trivial. For groups, the existence of a central series means it is a nilpotent group; for matrix rings (considered as Lie algebras), it means that in some basis the ring consists entirely of upper triangular matrices with constant diagonal. This article uses the language of group theory; analogous terms are used for Lie algebras.
Matrice nilpotenteUne matrice nilpotente est une matrice dont il existe une puissance égale à la matrice nulle. Elle correspond à la notion d'endomorphisme nilpotent sur un espace vectoriel de dimension finie. Cette notion facilite souvent le calcul matriciel. En effet, si le polynôme caractéristique d'une matrice est scindé (c'est-à-dire décomposable en produit de facteurs du premier degré, ce qui est le cas par exemple si le corps des coefficients est algébriquement clos), alors l'endomorphisme associé possède une décomposition de Dunford.
Compact Lie algebraIn the mathematical field of Lie theory, there are two definitions of a compact Lie algebra. Extrinsically and topologically, a compact Lie algebra is the Lie algebra of a compact Lie group; this definition includes tori. Intrinsically and algebraically, a compact Lie algebra is a real Lie algebra whose Killing form is negative definite; this definition is more restrictive and excludes tori,. A compact Lie algebra can be seen as the smallest real form of a corresponding complex Lie algebra, namely the complexification.