Formule sommatoire de PoissonLa formule sommatoire de Poisson (parfois appelée resommation de Poisson) est une identité entre deux sommes infinies, la première construite avec une fonction , la seconde avec sa transformée de Fourier . Ici, f est une fonction sur la droite réelle ou plus généralement sur un espace euclidien. La formule a été découverte par Siméon Denis Poisson. Elle, et ses généralisations, sont importantes dans plusieurs domaines des mathématiques, dont la théorie des nombres, l'analyse harmonique, et la géométrie riemannienne.
Breast reductionReduction mammoplasty (also breast reduction and reduction mammaplasty) is the plastic surgery procedure for reducing the size of large breasts. In a breast reduction surgery for re-establishing a functional bust that is proportionate to the woman's body, the critical corrective consideration is the tissue viability of the nipple–areola complex (NAC), to ensure the functional sensitivity and lactational capability of the breasts.
Large numbersLarge numbers are numbers significantly larger than those typically used in everyday life (for instance in simple counting or in monetary transactions), appearing frequently in fields such as mathematics, cosmology, cryptography, and statistical mechanics. They are typically large positive integers, or more generally, large positive real numbers, but may also be other numbers in other contexts. Googology is the study of nomenclature and properties of large numbers.
Principe de correspondanceEn physique, le principe de correspondance, proposé la première fois par Niels Bohr en 1923, établit que le comportement quantique d'un système peut se réduire à un comportement de physique classique, quand les nombres quantiques mis en jeu sont très grands, ou quand la quantité d'action représentée par la constante de Planck peut être négligée devant l'action mise en œuvre dans le système. Les lois de la mécanique quantique sont extrêmement efficaces dans la description des objets microscopiques, comme les atomes ou les particules.
Bruit de grenaillevignette|Illustration d'un bruit d'émission de photons : le nombre moyen de photons par pixel augmente, de gauche à droite et de haut en bas, dans une simulation d'un processus de Poisson à partir d'une photo. Un bruit de grenaille, bruit de Schottky ou bruit quantique (en anglais, shot noise) est un bruit de fond qui peut être modélisé par un processus de Poisson. En électronique, il est causé par le fait que le courant électrique n'est pas continu mais constitué de porteurs de charge élémentaires (en général des électrons).
Mécanique des contactsLa mécanique des contacts traite des calculs impliquant des corps élastiques, visco-élastiques ou plastiques lors de contacts statiques ou dynamiques. La mécanique des contacts est l’un des fondements de l’ingénierie mécanique et est indispensable pour la conception de projets sûrs et énergiquement efficaces. Elle peut être appliquée dans différents domaines tel que le contact roue-rail, les embrayages, les freins, les pneumatiques, les paliers et roulements, les moteurs à combustion, les liaisons mécaniques, les joints, les machines de production, le soudage par ultrasons, les contacts électriques et bien d'autres.
Modèle de mélangeIn statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population.
Valeur propre, vecteur propre et espace propreEn mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Homologie de FloerL'homologie de Floer est une adaptation de l'homologie de Morse en dimension infinie. L'homologie de Floer symplectique (HFS) est une théorie homologique pour une variété symplectique munie d'un symplectomorphisme non-dégénéré. Si le symplectomorphisme est hamiltonien, l'homologie provient de l'étude de la fonctionnelle d'action symplectique sur le revêtement universel de l'espace des lacets de la variété symplectique. L'homologie de Floer symplectique est invariante par isotopie hamiltonienne du symplectomorphisme.