Théorie des systèmes dynamiquesLa théorie des systèmes dynamiques désigne couramment la branche des mathématiques qui s'efforce d'étudier les propriétés d'un système dynamique. Cette recherche active se développe à la frontière de la topologie, de l'analyse, de la géométrie, de la théorie de la mesure et des probabilités. La nature de cette étude est conditionnée par le système dynamique étudié et elle dépend des outils utilisés (analytiques, géométriques ou probabilistes).
Suite logistiqueEn mathématiques, une suite logistique est une suite réelle simple, mais dont la récurrence n'est pas linéaire. Sa relation de récurrence est Suivant la valeur du paramètre μ (dans [0; 4] pour assurer que les valeurs de x restent dans [0; 1]), elle engendre soit une suite convergente, soit une suite soumise à oscillations, soit une suite chaotique. Souvent citée comme exemple de la complexité de comportement pouvant surgir d'une relation non linéaire simple, cette suite fut popularisée par le biologiste Robert May en 1976.
Ensemble de MandelbrotEn mathématiques, lensemble de Mandelbrot est une fractale définie comme l'ensemble des points c du plan complexe pour lesquels la suite de nombres complexes définie par récurrence par : est bornée. alt=Représentation de l'ensemble de Mandelbrot|vignette|L'ensemble de Mandelbrot (en noir) L'ensemble de Mandelbrot a été découvert par Gaston Julia et Pierre Fatou avant la Première Guerre mondiale. Sa définition et son nom actuel sont dus à Adrien Douady, en hommage aux représentations qu'en a réalisées Benoît Mandelbrot dans les années 1980.
Nombres de FeigenbaumEn mathématiques, les nombres de Feigenbaum ou constantes de Feigenbaum sont deux nombres réels découverts par le mathématicien Mitchell Feigenbaum en 1975. Tous deux expriment des rapports apparaissant dans les diagrammes de bifurcation de la théorie du chaos. vignette|droite|Exemple de diagramme de bifurcation (en abscisse, r désigne le paramètre μ). Les diagrammes de bifurcation concernent les valeurs limites prises par les suites de type où f est une fonction réelle, définie positive et trois fois dérivable sur [0, 1] et possédant un maximum unique sur cet intervalle (c’est-à-dire sans maximum relatif), noté f.
Théorie des catastrophesDans le domaine de la topologie différentielle, la théorie des catastrophes, fondée par René Thom, est une branche de la théorie des bifurcations qui a pour but de construire le modèle dynamique continu le plus simple pouvant engendrer une morphologie, donnée empiriquement, ou un ensemble de phénomènes discontinus. Plus précisément, il s'agit d'étudier qualitativement comment les solutions d'équations dépendent du nombre de paramètres qu'elles contiennent. Le terme de « catastrophe » désigne le lieu où une fonction change brusquement de forme.
Attracteur de HénonL'attracteur de Hénon est un système dynamique à temps discret. C'est l'un des systèmes dynamiques ayant un comportement chaotique les plus étudiés. L'attracteur de Hénon prend tout point du plan (x, y) et lui associe le nouveau point : Il dépend de deux paramètres, a et b, qui ont pour valeurs canoniques : a = 1,4 et b = 0,3. Pour ces valeurs, l'attracteur de Hénon est chaotique. Pour d'autres valeurs de a et b, il peut être chaotique, intermittent ou converger vers une orbite périodique.
Models of neural computationModels of neural computation are attempts to elucidate, in an abstract and mathematical fashion, the core principles that underlie information processing in biological nervous systems, or functional components thereof. This article aims to provide an overview of the most definitive models of neuro-biological computation as well as the tools commonly used to construct and analyze them.
Système dissipatifUn système dissipatif (ou structure dissipative) est un système qui évolue dans un environnement avec lequel il échange de l'énergie ou de la matière. C'est donc un système ouvert, loin d'un équilibre thermodynamique. Un système dissipatif est caractérisé par le bilan de ses échanges (échange d'énergie, création d'entropie), et l'apparition spontanée d'une brisure de symétrie spatiale (anisotropie) qui peut quelquefois laisser apparaître une structure complexe chaotique. L'expression « structures dissipatives » fut créée par Ilya Prigogine.
Codage neuronalLe codage neuronal désigne, en neurosciences, la relation hypothétique entre le stimulus et les réponses neuronales individuelles ou globales. C'est une théorie sur l'activité électrique du système nerveux, selon laquelle les informations, par exemple sensorielles, numériques ou analogiques, sont représentées dans le cerveau par des réseaux de neurones. Le codage neuronal est lié aux concepts du souvenir, de l'association et de la mémoire sensorielle.
Réseau de neurones à impulsionsLes réseaux de neurones à impulsions (SNNs : Spiking Neural Networks, en anglais) sont un raffinement des réseaux de neurones artificiels (ANNs : Artificial Neural Networks, en anglais) où l’échange entre neurones repose sur l’intégration des impulsions et la redescente de l’activation, à l’instar des neurones naturels. L’encodage est donc temporel et binaire. Le caractère binaire pose une difficulté de continuité au sens mathématique (cela empêche notamment l’utilisation des techniques de rétropropagation des coefficients - telle que la descente de gradient - utilisées classiquement dans les méthodes d'apprentissage).