Coloration de graphethumb|Une coloration du graphe de Petersen avec 3 couleurs. En théorie des graphes, la coloration de graphe consiste à attribuer une couleur à chacun de ses sommets de manière que deux sommets reliés par une arête soient de couleur différente. On cherche souvent à utiliser le nombre minimal de couleurs, appelé nombre chromatique. La coloration fractionnaire consiste à chercher non plus une mais plusieurs couleurs par sommet et en associant des coûts à chacune.
Théorème des quatre couleursLe théorème des quatre couleurs indique qu'il est possible, en n'utilisant que quatre couleurs différentes, de colorier n'importe quelle carte découpée en régions connexes, de sorte que deux régions adjacentes (ou limitrophes), c'est-à-dire ayant toute une frontière (et non simplement un point) en commun reçoivent toujours deux couleurs distinctes. L'énoncé peut varier et concerner, de manière tout à fait équivalente, la coloration des faces d'un polyèdre ou celle des sommets d'un graphe planaire, en remplaçant la carte par un graphe dont les sommets sont les régions et les arêtes sont les frontières entre régions.
Théorème de RamseyEn mathématiques, et plus particulièrement en combinatoire, le théorème de Ramsey, dû à Frank Ramsey (en 1930), est un théorème fondamental de la théorie de Ramsey. Il affirme que pour tout n, tout graphe complet suffisamment grand dont les arêtes sont colorées contient des sous-graphes complets de taille n d'une seule couleur. En théorie des ensembles, une de ses généralisations, le théorème de Ramsey infini, permet de définir un type particulier de grand cardinal.
Graphe planaireDans la théorie des graphes, un graphe planaire est un graphe qui a la particularité de pouvoir se représenter sur un plan sans qu'aucune arête (ou arc pour un graphe orienté) n'en croise une autre. Autrement dit, ces graphes sont précisément ceux que l'on peut plonger dans le plan, ou encore les graphes dont le nombre de croisements est nul. Les méthodes associées à ces graphes permettent de résoudre des problèmes comme l'énigme des trois maisons et d'autres plus difficiles comme le théorème des quatre couleurs.
Dégénérescence (théorie des graphes)En théorie des graphes, la dégénérescence est un paramètre associé à un graphe non orienté. Un graphe est k-dégénéré si tout sous-graphe contient un nœud de degré inférieur ou égal à k, et la dégénérescence d'un graphe est le plus petit k tel qu'il est k-dégénéré. On peut de façon équivalente définir le paramètre en utilisant un ordre sur les sommets (appelé ordre de dégénérescence) tel que, pour tout sommet, le nombre d'arêtes vers des sommets plus petits dans l'ordre est au plus k. On parle alors parfois de nombre de marquage.
Coloration des arêtes d'un graphethumb|Coloration des arêtes du graphe de Desargues avec trois couleurs. En théorie des graphes et en algorithmique, une coloration des arêtes d'un graphe consiste à attribuer à chaque arête une couleur, en évitant que deux arêtes ayant une extrémité commune soient de la même couleur. La figure ci-contre est un exemple de coloration d'arêtes correcte. On vérifie en effet qu'aucun sommet n'est commun à deux arêtes de même couleur. On remarquera qu'ici, il n'aurait pas été possible de colorer les arêtes du graphe avec seulement deux couleurs.
CographeUn cographe est, en théorie des graphes, un graphe qui peut être généré par complémentation et union disjointe à partir du graphe à un nœud. La plupart des problèmes algorithmiques peuvent être résolus sur cette classe en temps polynomial, et même linaire, du fait de ses propriétés structurelles. Cette famille de graphe a été introduite par plusieurs auteurs indépendamment dans les années 1970 sous divers noms, notamment D*-graphes, hereditary Dacey graphs et 2-parity graphs.
Recherche tabouLa recherche tabou est une métaheuristique d'optimisation présentée par Fred W. Glover en 1986. On trouve souvent l'appellation recherche avec tabous en français. Cette méthode est une métaheuristique itérative qualifiée de recherche locale au sens large. L'idée de la recherche tabou consiste, à partir d'une position donnée, à en explorer le voisinage et à choisir la position dans ce voisinage qui minimise la fonction objectif.
Kempe chainIn mathematics, a Kempe chain is a device used mainly in the study of the four colour theorem. Intuitively, it is a connected chain of points on a graph with alternating colors. Kempe chains were first used by Alfred Kempe in his attempted proof of the four colour theorem. Even though his proof turned out to be incomplete, the method of Kempe chains is crucial to the successful modern proofs (Appel & Haken, Robertson et al., etc.). Furthermore, the method is used in the proof of the five-colour theorem by Percy John Heawood, a weaker form of the four-colour theorem.
Groupe de permutationsEn théorie des groupes (mathématiques), un groupe de permutations d'un ensemble X est par définition un sous-groupe du groupe symétrique SX. On parle d'un groupe de permutations de X ou, s'il n'est pas nécessaire de préciser l'ensemble X, d'un groupe de permutations. Pour un ensemble X, nous désignerons ici par SX et nous appellerons groupe symétrique de X l'ensemble des permutations de X, muni de la loi de groupe ∘ définie par f ∘ g : X → X, x ↦ f(g(x)). Cette définition convient à l'étude des actions à gauche d'un groupe sur un ensemble.