Géométrie hyperboliqueEn mathématiques, la géométrie hyperbolique (nommée auparavant géométrie de Lobatchevski, lequel est le premier à en avoir publié une étude approfondie) est une géométrie non euclidienne vérifiant les quatre premiers postulats d’Euclide, mais pour laquelle le cinquième postulat, qui équivaut à affirmer que par un point extérieur à une droite passe une et une seule droite qui lui est parallèle, est remplacé par le postulat selon lequel « par un point extérieur à une droite passent plusieurs droites parallèle
Nombre primaireEn mathématiques, plus précisément en arithmétique, un nombre primaire, également appelé puissance première, est une puissance à exposant entier positif non nul d'un nombre premier. Par exemple : 5=51, 9=32 et 16=24 sont des nombres primaires, alors que 6=2×3, 15=3×5 et 36=62=22×32 n'en sont pas. Les vingt plus petits nombres primaires sont : 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41. Les puissances premières sont tous les nombres entiers positifs qui ne sont divisibles que par un seul nombre premier.
IsométrieEn géométrie, une isométrie est une transformation, qui conserve les longueurs et les mesures d’angles, délimités par deux demi‐droites ou bien deux demi‐plans. Autrement dit, une isométrie est une similitude particulière, qui reproduit n’importe quelle figure à l’échelle 1. Ce rapport 1 de longueurs s’appelle le rapport de la similitude. Comme une similitude, une isométrie dite directe conserve l’orientation des figures, tandis qu’une isométrie indirecte inverse leur orientation.
Groupe de MathieuEn mathématiques, les groupes de Mathieu sont cinq groupes simples finis découverts par le mathématicien français Émile Mathieu. Ils sont habituellement perçus comme des groupes de permutations sur n points (où n peut prendre les valeurs 11, 12, 22, 23 ou 24) et sont nommés M. Les groupes de Mathieu ont été les premiers groupes sporadiques découverts. Les groupes M et M sont 5-transitifs, les groupes M et M sont 4-transitifs et M est 3-transitif. Cette transitivité est même stricte pour M et M.
Graphe arête-transitifvignette|Graphe de Gray, arête-transitif et régulier mais pas sommet-transitif. En théorie des graphes, un graphe non-orienté est arête-transitif si pour tout couple d'arêtes, il existe un automorphisme de graphe envoyant la première arête sur la seconde. Un graphe non-orienté est arête-transitif si pour tout couple d'arêtes, il existe un automorphisme de graphe envoyant la première arête sur la seconde. En d'autres termes, un graphe est arête-transitif si son groupe d'automorphismes agit transitivement sur l'ensemble de ses arêtes.
Graphe symétriqueEn théorie des graphes, un graphe non orienté G=(V,E) est symétrique (ou arc-transitif) si, étant donné deux paires quelconques de sommets reliés par une arête u1—v1 et u2—v2 de G, il existe un automorphisme de graphe : tel que et . En d'autres termes, un graphe est symétrique si son groupe d'automorphismes agit transitivement sur ses paires ordonnées de sommets reliés. Un tel graphe est parfois appelé 1-arc-transitif. Par définition, un graphe symétrique sans sommet isolé est sommet-transitif et arête-transitif.
Point groups in two dimensionsIn geometry, a two-dimensional point group or rosette group is a group of geometric symmetries (isometries) that keep at least one point fixed in a plane. Every such group is a subgroup of the orthogonal group O(2), including O(2) itself. Its elements are rotations and reflections, and every such group containing only rotations is a subgroup of the special orthogonal group SO(2), including SO(2) itself. That group is isomorphic to R/Z and the first unitary group, U(1), a group also known as the circle group.
Point groups in four dimensionsIn geometry, a point group in four dimensions is an isometry group in four dimensions that leaves the origin fixed, or correspondingly, an isometry group of a 3-sphere. 1889 Édouard Goursat, Sur les substitutions orthogonales et les divisions régulières de l'espace, Annales Scientifiques de l'École Normale Supérieure, Sér. 3, 6, (pp. 9–102, pp. 80–81 tetrahedra), Goursat tetrahedron 1951, A. C. Hurley, Finite rotation groups and crystal classes in four dimensions, Proceedings of the Cambridge Philosophical Society, vol.
Quasi-isometryIn mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces. The concept of quasi-isometry is especially important in geometric group theory, following the work of Gromov.
Arthur CayleyArthur Cayley ( - ) est un mathématicien britannique. Il fait partie des fondateurs de l'école britannique moderne de mathématiques pures. C'est à la faveur d'une visite estivale de ses parents, Henry Cayley (1768-1850) et Maria Antonia Doughty (1794-1875), qui résident alors en Russie, à Saint-Pétersbourg, qu'Arthur Cayley naît en Angleterre, à Richmond, comté de Surrey, plus précisément. La famille paternelle d'Arthur est originaire de Normandie, un aïeul , Osborne de Cailly, ayant été l'un des seigneurs engagés dans l'invasion normande de l'Angleterre en 1066.